Publications

2017
George E, Liacouras P, Lee TC, Mitsouras D. 3D-Printed Patient-Specific Models for CT-and MRI-Guided Procedure Planning. AJNR Am J Neuroradiol. 2017.
Mallory MA, Sagara Y, Aydogan F, Desantis S, Jayender J, Caragacianu D, Gombos E, Vosburgh KG, Jolesz FA, Golshan M. Feasibility of Intraoperative Breast MRI and the Role of Prone Versus Supine Positioning in Surgical Planning for Breast-Conserving Surgery. Breast J. 2017.Abstract
We assessed the feasibility of supine intraoperative MRI (iMRI) during breast-conserving surgery (BCS), enrolling 15 patients in our phase I trial between 2012 and 2014. Patients received diagnostic prone MRI, BCS, pre-excisional supine iMRI, and postexcisional supine iMRI. Feasibility was assessed based on safety, sterility, duration, and image-quality. Twelve patients completed the study; mean duration = 114 minutes; all images were adequate; no complications, safety, or sterility issues were encountered. Substantial tumor-associated changes occurred (mean displacement = 67.7 mm, prone-supine metric, n = 7). We have demonstrated iMRI feasibility for BCS and have identified potential limitations of prone breast MRI that may impact surgical planning.
Wong SM, Freedman RA, Sagara Y, Aydogan F, Barry WT, Golshan M. Growing Use of Contralateral Prophylactic Mastectomy Despite no Improvement in Long-term Survival for Invasive Breast Cancer. Ann Surg. 2017;265 (3) :581-589.Abstract
OBJECTIVE: To update and examine national temporal trends in contralateral prophylactic mastectomy (CPM) and determine whether survival differed for invasive breast cancer patients based on hormone receptor (HR) status and age. METHODS: We identified women diagnosed with unilateral stage I to III breast cancer between 1998 and 2012 within the Surveillance, Epidemiology, and End Results registry. We compared characteristics and temporal trends between patients undergoing breast-conserving surgery, unilateral mastectomy, and CPM. We then performed Cox proportional-hazards regression to examine breast cancer-specific survival (BCSS) and overall survival (OS) in women diagnosed between 1998 and 2007, who underwent breast-conserving surgery with radiation (breast-conserving therapy), unilateral mastectomy, or CPM, with subsequent subgroup analysis stratifying by age and HR status. RESULTS: Of 496,488 women diagnosed with unilateral invasive breast cancer, 59.6% underwent breast-conserving surgery, 33.4% underwent unilateral mastectomy, and 7.0% underwent CPM. Overall, the proportion of women undergoing CPM increased from 3.9% in 2002 to 12.7% in 2012 (P < 0.001). Reconstructive surgery was performed in 48.3% of CPM patients compared with only 16.0% of unilateral mastectomy patients, with rates of reconstruction with CPM rising from 35.3% in 2002 to 55.4% in 2012 (P < 0.001). When compared with breast-conserving therapy, we found no significant improvement in BCSS or OS for women undergoing CPM (BCSS: HR 1.08, 95% confidence interval 1.01-1.16; OS: HR 1.08, 95% confidence interval 1.03-1.14), regardless of HR status or age. CONCLUSIONS: The use of CPM more than tripled during the study period despite evidence suggesting no survival benefit over breast conservation. Further examination on how to optimally counsel women about surgical options is warranted.
Chou S-HS, Gombos EC, Chikarmane SA, Giess CS, Jayender J. Computer-Aided Heterogeneity Analysis in Breast MR Imaging Assessment of Ductal Carcinoma In Situ: Correlating Histologic Grade and Receptor Status. J Magn Reson Imaging. 2017.Abstract

PURPOSE: To identify breast MR imaging biomarkers to predict histologic grade and receptor status of ductal carcinoma in situ (DCIS). MATERIALS AND METHODS: Informed consent was waived in this Health Insurance Portability and Accountability Act-compliant Institutional Review Board-approved study. Case inclusion was conducted from 7332 consecutive breast MR studies from January 1, 2009, to December 31, 2012. Excluding studies with benign diagnoses, studies without visible abnormal enhancement, and pathology containing invasive disease yielded 55 MR-imaged pathology-proven DCIS seen on 54 studies. Twenty-eight studies (52%) were performed at 1.5 Tesla (T); 26 (48%) at 3T. Regions-of-interest representing DCIS were segmented for precontrast, first and fourth postcontrast, and subtracted first and fourth postcontrast images on the open-source three-dimensional (3D) Slicer software. Fifty-seven metrics of each DCIS were obtained, including distribution statistics, shape, morphology, Renyi dimensions, geometrical measure, and texture, using the 3D Slicer HeterogeneityCAD module. Statistical correlation of heterogeneity metrics with DCIS grade and receptor status was performed using univariate Mann-Whitney test. RESULTS: Twenty-four of the 55 DCIS (44%) were high nuclear grade (HNG); 44 (80%) were estrogen receptor (ER) positive. Human epidermal growth factor receptor-2 (HER2) was amplified in 10/55 (18%), nonamplified in 34/55 (62%), unknown/equivocal in 8/55 (15%). Surface area-to-volume ratio showed significant difference (P < 0.05) between HNG and non-HNG DCIS. No metric differentiated ER status (0.113 < p ≤ 1.000). Seventeen metrics showed significant differences between HER2-positive and HER2-negative DCIS (0.016 < P < 0.050). CONCLUSION: Quantitative heterogeneity analysis of DCIS suggests the presence of MR imaging biomarkers in classifying DCIS grade and HER2 status. Validation with larger samples and prospective studies is needed to translate these results into clinical applications. LEVEL OF EVIDENCE: 3 J. Magn. Reson. Imaging 2017.

Halle M, Demeusy V, Kikinis R. The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases. Front Neuroinform. 2017;11 :22.Abstract
The Open Anatomy Browser (OABrowser) is an open source, web-based, zero-installation anatomy atlas viewer based on current web browser technologies and evolving anatomy atlas interoperability standards. OABrowser displays three-dimensional anatomical models, image cross-sections of labeled structures and source radiological imaging, and a text-based hierarchy of structures. The viewer includes novel collaborative tools: users can save bookmarks of atlas views for later access and exchange those bookmarks with other users, and dynamic shared views allow groups of users can participate in a collaborative interactive atlas viewing session. We have published several anatomy atlases (an MRI-derived brain atlas and atlases of other parts of the anatomy) to demonstrate OABrowser's functionality. The atlas source data, processing tools, and the source for OABrowser are freely available through GitHub and are distributed under a liberal open source license.
Huang KT, Ludy S, Calligaris D, Dunn IF, Laws E, Santagata S, Agar NYR. Rapid Mass Spectrometry Imaging to Assess the Biochemical Profile of Pituitary Tissue for Potential Intraoperative Usage. Adv Cancer Res. 2017;134 :257-82.Abstract

Pituitary adenomas are relatively common intracranial neoplasms that are frequently treated with surgical resection. Rapid visualization of pituitary tissue remains a challenge as current techniques either produce little to no information on hormone-secreting function or are too slow to practically aid in intraoperative or even perioperative decision-making. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) represents a powerful method by which molecular maps of tissue samples can be created, yielding a two-dimensional representation of the expression patterns of small molecules and proteins from biologic samples. In this chapter, we review the use of MALDI MSI, its application to the characterization of the pituitary gland, and its potential applications for guiding the management of pituitary adenomas.

Kamran SC, Manuel MM, Cho LP, Damato AL, Schmidt EJ, Tempany C, Cormack RA, Viswanathan AN. Comparison of Outcomes for MR-guided versus CT-guided High-dose-rate Interstitial Brachytherapy in Women with Locally Advanced Carcinoma of the Cervix. Gynecol Oncol. 2017;145 (2) :284-90.Abstract

OBJECTIVE: The purpose was to compare local control (LC), overall survival (OS) and dose to the organs at risk (OAR) in women with locally advanced cervical cancer treated with MR-guided versus CT-guided interstitial brachytherapy (BT). METHODS: 56 patients (29 MR, 27 CT) were treated with high-dose-rate (HDR) interstitial BT between 2005-2015. The MR patients had been prospectively enrolled on a Phase II clinical trial. Data were analyzed using Kaplan-Meier (K-M) and Cox proportional hazards statistical modeling in JMP® & R®. RESULTS: Median follow-up time was 19.7months (MR group) and 18.4months (CT group). There were no statistically significant differences in patient age at diagnosis, histology, percent with tumor size >4cm, grade, FIGO stage or lymph node involvement between the groups. Patients in the MR group had more lymphovascular involvement compared to patients in the CT group (p<0.01). When evaluating plans generated, there were no statistically significant differences in median cumulative dose to the high-risk clinical target volume or the OAR. 2-year K-M LC rates for MR-based and CT-based treatments were 96% and 87%, respectively (log-rank p=0.65). At 2years, OS was significantly better in the MR-guided cohort (84% vs. 56%, p=0.036). On multivariate analysis, squamous histology was associated with longer OS (HR 0.23, 95% CI 0.07-0.72) in a model with MR BT (HR 0.35, 95% CI 0.08-1.18). There was no difference in toxicities between CT and MR BT. CONCLUSION: In this population of locally advanced cervical-cancer patients, MR-guided HDR BT resulted in estimated 96% 2-year local control and excellent survival and toxicity rates.

Velez E, Fedorov A, Tuncali K, Olubiyi O, Allard CB, Kibel AS, Tempany CM. Pathologic Correlation of Transperineal In-Bore 3-Tesla Magnetic Resonance Imaging-Guided Prostate Biopsy Samples with Radical Prostatectomy Specimen. Abdom Radiol (NY). 2017.Abstract

PURPOSE: To determine the accuracy of in-bore transperineal 3-Tesla (T) magnetic resonance (MR) imaging-guided prostate biopsies for predicting final Gleason grades in patients who subsequently underwent radical prostatectomy (RP). METHODS: A retrospective review of men who underwent transperineal MR imaging-guided prostate biopsy (tpMRGB) with subsequent radical prostatectomy within 1 year was conducted from 2010 to 2015. All patients underwent a baseline 3-T multiparametric MRI (mpMRI) with endorectal coil and were selected for biopsy based on MR findings of a suspicious prostate lesion and high degree of clinical suspicion for cancer. Spearman correlation was performed to assess concordance between tpMRGB and final RP pathology among patients with and without previous transrectal ultrasound (TRUS)-guided biopsies. RESULTS: A total of 24 men met all eligibility requirements, with a median age of 65 years (interquartile range [IQR] 11.7). The median time from biopsy to RP was 85 days (IQR 50.5). Final pathology revealed Gleason 3 + 4 = 7 in 12 patients, 4 + 3 = 7 in 10 patients, and 4 + 4 = 8 in 2 patients. A strong correlation (ρ: +0.75, p < 0.001) between tpMRGB and RP results was observed, with Gleason scores concordant in 17 cases (71%). 16 of the 24 patients underwent prior TRUS biopsies. Subsequent tpMRGB revealed Gleason upgrading in 88% of cases, which was concordant with RP Gleason scores in 69% of cases (ρ: +0.75, p < 0.001). CONCLUSION: Final Gleason scores diagnosed by tpMRGB at 3-T correlate strongly with final RP surgical pathology. This may facilitate prostate cancer diagnosis, particularly in patients with negative or low-grade TRUS biopsy results in whom clinically significant cancer is suspected or detected on mpMRI.

Kapur T, Tempany CM. Proceedings of the 9th Image Guided Therapy Workshop. 2017;9 :1-54. 2017 IGT Workshop Proceedings
Pujol S, Cabeen R, Sébille SB, Yelnik J, François C, Fernandez Vidal S, Karachi C, Zhao Y, Cosgrove RG, Jannin P, et al. In vivo Exploration of the Connectivity between the Subthalamic Nucleus and the Globus Pallidus in the Human Brain using Multi-Fiber Tractography. Front Neuroanat. 2017;10 :119.Abstract

The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson's disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson's disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.

Shyn PB, Tremblay-Paquet S, Palmer K, Tatli S, Tuncali K, Olubiyi OI, Hata N, Silverman SG. Breath-hold PET/CT-guided Tumor Ablation under General Anesthesia: Accuracy of Tumor Image Registration and Projected Ablation Zone Overlap. Clin Radiol. 2017;72 (3) :223-9.Abstract

AIM: To assess single-breath-hold combined positron-emission tomography/computed tomography (PET/CT) for accuracy of tumour image registration and projected ablation volume overlap in patients undergoing percutaneous PET/CT-guided tumour-ablation procedures under general anaesthesia. MATERIALS AND METHODS: Eight patients underwent 12 PET/CT-guided tumour-ablation procedures to treat 20 tumours in the lung, liver, or adrenal gland. Using breath-hold PET/CT, the centre of the tumour was marked on each PET and CT acquisition by four readers to assess two- (2D) and three-dimensional (3D) spatial misregistration. Overlap of PET and CT projected ablation volumes were compared using the Dice similarity coefficient (DSC). Interobserver differences were assessed with repeated measure analysis of variance (ANOVA). Technical success and local progression rates were noted. RESULTS: Mean tumour 2D PET/CT misregistrations were 1.02 mm (range 0.01-5.02), 1.89 (0.03-7.85), and 3.05 (0-10) in the x, y, and z planes. Mean 3D misregistration was 4.4 mm (0.36-10.74). Mean projected PET/CT ablation volume DSC was 0.72 (±0.19). No significant interobserver differences in 3D misregistration (p=0.73) or DSC (p=0.54) were observed. Technical success of ablations was 100%; one (5.3%) of 19 tumours progressed. CONCLUSION: Accurate spatial registration of tumours and substantial overlap of projected ablation volumes are achievable when comparing PET and CT acquisitions from single-breath-hold PET/CT. The results suggest that tumours visible only at PET could be accurately targeted and ablated using this technique.

Guenette JP, Tuncali K, Himes N, Shyn PB, Lee TC. Percutaneous Image-Guided Cryoablation of Head and Neck Tumors for Local Control, Preservation of Functional Status, and Pain Relief. AJR Am J Roentgenol. 2017;208 (2) :453-8.Abstract

OBJECTIVE: We report nine consecutive percutaneous image-guided cryoablation procedures of head and neck tumors in seven patients (four men and three women; mean age, 68 years; age range, 50-78 years). Ablation of the entire tumor for local control or ablation of a region of tumor for pain relief or preservation of function was achieved in eight of nine procedures. One patient experienced intraprocedural bradycardia, and another developed a neopharyngeal abscess. There were no deaths, permanent neurologic or functional deficits, vascular complications, or adverse cosmetic sequelae due to the procedures. CONCLUSION: Percutaneous image-guided cryoablation offers a potentially less morbid minimally invasive treatment option than salvage head and neck surgery. The complications that we encountered may be avoidable with increased experience. Further work is needed to continue improving the safety and efficacy of cryoablation of head and neck tumors and to continue expanding the use of cryoablation in patients with head and neck tumors that cannot be treated surgically.

Glazer DI, Hassanzadeh E, Fedorov A, Olubiyi OI, Goldberger SS, Penzkofer T, Flood TA, Masry P, Mulkern RV, Hirsch MS, et al. Diffusion-weighted Endorectal MR Imaging at 3T for Prostate Cancer: Correlation with Tumor Cell Density and Percentage Gleason Pattern on Whole Mount Pathology. Abdom Radiol (NY). 2017;42 (3) :918-25.Abstract

OBJECTIVE: To determine if tumor cell density and percentage of Gleason pattern within an outlined volumetric tumor region of interest (TROI) on whole-mount pathology (WMP) correlate with apparent diffusion coefficient (ADC) values on corresponding TROIs outlined on pre-operative MRI. METHODS: Men with biopsy-proven prostate adenocarcinoma undergoing multiparametric MRI (mpMRI) prior to prostatectomy were consented to this prospective study. WMP and mpMRI images were viewed using 3D Slicer and each TROI from WMP was contoured on the high b-value ADC maps (b0, 1400). For each TROI outlined on WMP, TCD (tumor cell density) and the percentage of Gleason pattern 3, 4, and 5 were recorded. The ADCmean, ADC10th percentile, ADC90th percentile, and ADCratio were also calculated in each case from the ADC maps using 3D Slicer. RESULTS: Nineteen patients with 21 tumors were included in this study. ADCmean values for TROIs were 944.8 ± 327.4 vs. 1329.9 ± 201.6 mm(2)/s for adjacent non-neoplastic prostate tissue (p < 0.001). ADCmean, ADC10th percentile, and ADCratio values for higher grade tumors were lower than those of lower grade tumors (mean 809.71 and 1176.34 mm(2)/s, p = 0.014; 10th percentile 613.83 and 1018.14 mm(2)/s, p = 0.009; ratio 0.60 and 0.94, p = 0.005). TCD and ADCmean (ρ = -0.61, p = 0.005) and TCD and ADC10th percentile (ρ = -0.56, p = 0.01) were negatively correlated. No correlation was observed between percentage of Gleason pattern and ADC values. CONCLUSION: DWI MRI can characterize focal prostate cancer using ADCratio, ADC10th percentile, and ADCmean, which correlate with pathological tumor cell density.

Mitsouras D, Lee TC, Liacouras P, Ionita CN, Pietilla T, Maier SE, Mulkern RV. Three-dimensional Printing of MRI-visible Phantoms and MR Image-guided Therapy Simulation. Magn Reson Med. 2017;77 (2) :613-22.Abstract

PURPOSE: To demonstrate the use of anatomic MRI-visible three-dimensional (3D)-printed phantoms and to assess process accuracy and material MR signal properties. METHODS: A cervical spine model was generated from computed tomography (CT) data and 3D-printed using an MR signal-generating material. Printed phantom accuracy and signal characteristics were assessed using 120 kVp CT and 3 Tesla (T) MR imaging. The MR relaxation rates and diffusion coefficient of the fabricated phantom were measured and (1) H spectra were acquired to provide insight into the nature of the proton signal. Finally, T2 -weighted imaging was performed during cryoablation of the model. RESULTS: The printed model produced a CT signal of 102 ± 8 Hounsfield unit, and an MR signal roughly 1/3(rd) that of saline in short echo time/short repetition time GRE MRI (456 ± 36 versus 1526 ± 121 arbitrary signal units). Compared with the model designed from the in vivo CT scan, the printed model differed by 0.13 ± 0.11 mm in CT, and 0.62 ± 0.28 mm in MR. The printed material had T2 ∼32 ms, T2*∼7 ms, T1 ∼193 ms, and a very small diffusion coefficient less than olive oil. MRI monitoring of the cryoablation demonstrated iceball formation similar to an in vivo procedure. CONCLUSION: Current 3D printing technology can be used to print anatomically accurate phantoms that can be imaged by both CT and MRI. Such models can be used to simulate MRI-guided interventions such as cryosurgeries. Future development of the proposed technique can potentially lead to printed models that depict different tissues and anatomical structures with different MR signal characteristics. 

Hassanzadeh E, Glazer DI, Dunne RM, Fennessy FM, Harisinghani MG, Tempany CM. Prostate Imaging Reporting and Data System Version 2 (PI-RADS v2): A Pictorial Review. Abdom Radiol (NY). 2017;42 (1) :278-89.Abstract

The most recent edition of the prostate imaging reporting and data system (PI-RADS version 2) was developed based on expert consensus of the international working group on prostate cancer. It provides the minimum acceptable technical standards for MR image acquisition and suggests a structured method for multiparametric prostate MRI (mpMRI) reporting. T1-weighted, T2-weighted (T2W), diffusion-weighted (DWI), and dynamic contrast-enhanced (DCE) imaging are the suggested sequences to include in mpMRI. The PI-RADS version 2 scoring system enables the reader to assess and rate all focal lesions detected at mpMRI to determine the likelihood of a clinically significant cancer. According to PI-RADS v2, a lesion with a Gleason score ≥7, volume >0.5 cc, or extraprostatic extension is considered clinically significant. PI-RADS v2 uses the concept of a dominant MR sequence based on zonal location of the lesion rather than summing each component score, as was the case in version 1. The dominant sequence in the peripheral zone is DWI and the corresponding apparent diffusion coefficient (ADC) map, with a secondary role for DCE in equivocal cases (PI-RADS score 3). For lesions in the transition zone, T2W images are the dominant sequence with DWI/ADC images playing a supporting role in the case of an equivocal lesion.

Sastry R, Bi WL, Pieper S, Frisken S, Kapur T, Wells W, Golby AJ. Applications of Ultrasound in the Resection of Brain Tumors. J Neuroimaging. 2017;27 (1) :5-15.Abstract

Neurosurgery makes use of preoperative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of preoperative imaging for neuronavigation, however, is diminished by the well-characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography, has dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies.

Ciris PA, Cheng C-C, Mei C-S, Panych LP, Madore B. Dual-Pathway Sequences for MR Thermometry: When and Where to use Them. Magn Reson Med. 2017;77 (3) :1193-1200.Abstract

PURPOSE: Dual-pathway sequences have been proposed to help improve the temperature-to-noise ratio (TNR) in MR thermometry. The present work establishes how much of an improvement these so-called "PSIF-FISP" sequences may bring in various organs and tissues. METHODS: Simulations and TNR calculations were validated against analytical equations, phantom, abdomen, and brain scans. Relative TNRs for PSIF-FISP, as compared to a dual-FISP reference standard, were calculated for flip angle (FA) = 1 to 85 º and repetition time (TR) = 6 to 60 ms, for gray matter, white matter, cervix, endometrium, myometrium, prostate, kidney medulla and cortex, bone marrow, pancreas, spleen, muscle, and liver tissues. RESULTS: PSIF-FISP was TNR superior in the kidney, pelvis, spleen, or gray matter at most tested TR and FA settings, and benefits increased at shorter TRs. PSIF-FISP was TNR superior in other tissues, e.g., liver, muscle, pancreas, for only short TR settings (20 ms or less). The TNR benefits of PSIF-FISP increased slightly with FA, and strongly with decreasing TR. Up to two- to three-fold reductions in TR with 20% TNR gains were achievable. In any given tissue, TNR performance is expected to further improve with heating, due to changes in relaxation rates. CONCLUSION: Dual-pathway PSIF-FISP can improve TNR and acquisition speed over standard gradient-recalled echo sequences, but optimal acquisition parameters are tissue dependent. Magn Reson Med 77:1193-1200, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Chao T-C, Chiou J-yuan G, Maier SE, Madore B. Fast Diffusion Imaging with High Angular Resolution. Magn Reson Med. 2017;77 (2) :696-706.Abstract

PURPOSE: High angular resolution diffusion imaging (HARDI) is a well-established method to help reveal the architecture of nerve bundles, but long scan times and geometric distortions inherent to echo planar imaging (EPI) have limited its integration into clinical protocols. METHODS: A fast imaging method is proposed here that combines accelerated multishot diffusion imaging (AMDI), multiplexed sensitivity encoding (MUSE), and crossing fiber angular resolution of intravoxel structure (CFARI) to reduce spatial distortions and reduce total scan time. A multishot EPI sequence was used to improve geometrical fidelity as compared to a single-shot EPI acquisition, and acceleration in both k-space and diffusion sampling enabled reductions in scan time. The method is regularized and self-navigated for motion correction. Seven volunteers were scanned in this study, including four with volumetric whole brain acquisitions. RESULTS: The average similarity of microstructural orientations between undersampled datasets and their fully sampled counterparts was above 85%, with scan times below 5 min for whole-brain acquisitions. Up to 2.7-fold scan time acceleration along with four-fold distortion reduction was achieved. CONCLUSION: The proposed imaging strategy can generate HARDI results with relatively good geometrical fidelity and low scan duration, which may help facilitate the transition of HARDI from a successful research tool to a practical clinical one. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc.

2016
Mallory MA, Losk K, Camuso K, Caterson S, Nimbkar S, Golshan M. Does "Two is Better Than One" Apply to Surgeons? Comparing Single-Surgeon Versus Co-surgeon Bilateral Mastectomies. Ann Surg Oncol. 2016;23 (4) :1111-6.Abstract
BACKGROUND: Bilateral mastectomies (BM) are traditionally performed by single surgeons (SS); a co-surgeon (CS) technique, where each surgeon concurrently performs a unilateral mastectomy, offers an alternative approach. We examined differences in general surgery time (GST), overall surgery time (OST), and patient complications for BM performed by CS and SS. METHODS: Patients undergoing BM with tissue expander reconstruction (BMTR) between January 2010 and May 2014 at our center were identified through operative case logs. GST (incision to end of BM procedure), reconstruction duration (RST) (plastic surgery start to end of reconstruction) and OST (OST = GST + RST) was calculated. Patient age, presence/stage of cancer, breast weight, axillary procedure performed, and 30-day postoperative complications were extracted from medical records. Differences in GST and OST between CS and SS cases were assessed with a t test. A multivariate linear regression was fit to identify factors associated with GST. RESULTS: A total of 116 BMTR cases were performed [CS, n = 67 (57.8 %); SS, n = 49 (42.2 %)]. Demographic characteristics did not differ between groups. GST and OST were significantly shorter for CS cases, 75.8 versus 116.8 min, p < .0001, and 255.2 versus 278.3 min, p = .005, respectively. Presence of a CS significantly reduces BMTR time (β = -38.82, p < .0001). Breast weight (β = 0.0093, p = .03) and axillary dissection (β = 28.69, p = .0003) also impacted GST. CONCLUSIONS: The CS approach to BMTR reduced both GST and OST; however, the degree of time savings (35.1 and 8.3 %, respectively) was less than hypothesized. A larger study is warranted to better characterize time, cost, and outcomes of the CS-approach for BM.
Manuel MM, Cho LP, Catalano PJ, Damato AL, Miyamoto DT, Tempany CM, Schmidt EJ, Viswanathan AN. Outcomes with Image-based Interstitial Brachytherapy for Vaginal Cancer. Radiother Oncol. 2016;120 (3) :486-92.Abstract

PURPOSE: To compare clinical outcomes of image-based versus non-image-based interstitial brachytherapy (IBBT) for vaginal cancer. METHODS AND MATERIALS: Of 72 patients with vaginal cancer treated with brachytherapy (BT), 47 had image guidance (CT=31, MRI=16) and 25 did not. Kaplan-Meier (KM) estimates were generated for any recurrence, local control (LC), disease-free interval (DFI), and overall survival (OS) and Cox models were used to assess prognostic factors. RESULTS: Median age was 66 and median follow-up time was 24months. Median cumulative EQD2 dose was 80.8Gy in the non-IBBT group and 77Gy in the IBBT group. For non-IBBT versus IBBT, the 2-year KM LC was 71% vs. 93% (p=0.03); DFI was 54% vs. 86% (p=0.04); and OS 52% vs. 82% (p=0.35). On multivariate analysis, IBBT was associated with better DFI (HR 0.24, 95% CI 0.07-0.73). Having any 2 or more of chemotherapy, high-dose-rate (HDR) BT or IBBT (temporally correlated variables) significantly reduced risk of relapse (HR=0.33, 95% CI=0.13-0.83), compared to having none of these factors. CONCLUSION: Over time, the use of chemotherapy, HDR, and IBBT has increased in vaginal cancer. The combination of these factors resulted in the highest rates of disease control. Image-guided brachytherapy for vaginal cancer patients maximizes disease control.

Pages