Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N, O'Donnell LJ. An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan. Neuroimage. 2018;179 :429-47.Abstract
This work presents an anatomically curated white matter atlas to enable consistent white matter tract parcellation across different populations. Leveraging a well-established computational pipeline for fiber clustering, we create a tract-based white matter atlas including information from 100 subjects. A novel anatomical annotation method is proposed that leverages population-based brain anatomical information and expert neuroanatomical knowledge to annotate and categorize the fiber clusters. A total of 256 white matter structures are annotated in the proposed atlas, which provides one of the most comprehensive tract-based white matter atlases covering the entire brain to date. These structures are composed of 58 deep white matter tracts including major long range association and projection tracts, commissural tracts, and tracts related to the brainstem and cerebellar connections, plus 198 short and medium range superficial fiber clusters organized into 16 categories according to the brain lobes they connect. Potential false positive connections are annotated in the atlas to enable their exclusion from analysis or visualization. In addition, the proposed atlas allows for a whole brain white matter parcellation into 800 fiber clusters to enable whole brain connectivity analyses. The atlas and related computational tools are open-source and publicly available. We evaluate the proposed atlas using a testing dataset of 584 diffusion MRI scans from multiple independently acquired populations, across genders, the lifespan (1 day-82 years), and different health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). Experimental results show successful white matter parcellation across subjects from different populations acquired on multiple scanners, irrespective of age, gender or disease indications. Over 99% of the fiber tracts annotated in the atlas were detected in all subjects on average. One advantage in terms of robustness is that the tract-based pipeline does not require any cortical or subcortical segmentations, which can have limited success in young children and patients with brain tumors or other structural lesions. We believe this is the first demonstration of consistent automated white matter tract parcellation across the full lifespan from birth to advanced age.
King MT, Nguyen PL, Boldbaatar N, Tempany CM, Cormack RA, Beard CJ, Hurwitz MD, Suh WW, D'Amico AV, Orio PF. Long-Term Outcomes of Partial Prostate Treatment with Magnetic Resonance Imaging-Guided Brachytherapy for Patients with Favorable-Risk Prostate Cancer. Cancer. 2018.Abstract
BACKGROUND: Partial prostate treatment has emerged as a potential method for treating patients with favorable-risk prostate cancer while minimizing toxicity. The authors previously demonstrated poor rates of biochemical disease control for patients with National Comprehensive Cancer Network (NCCN) intermediate-risk disease using partial gland treatment with brachytherapy. The objective of the current study was to estimate the rates of distant metastasis and prostate cancer-specific mortality (PCSM) for this cohort. METHODS: Between 1997 and 2007, a total of 354 men with clinical T1c disease, a prostate-specific antigen (PSA) level < 15 ng/mL, and Gleason grade ≤3 + 4 prostate cancer underwent partial prostate treatment with brachytherapy to the peripheral zone under 0.5-Tesla magnetic resonance guidance. The cumulative incidences of metastasis and PCSM for the NCCN very low-risk, low-risk, and intermediate-risk groups were estimated. Fine and Gray competing risk regression was used to evaluate clinical factors associated with time to metastasis. RESULTS: A total of 22 patients developed metastases at a median of 11.0 years (interquartile range, 6.9-13.9 years). The 12-year metastasis rates for patients with very low-risk, low-risk, and intermediate-risk disease were 0.8% (95% confidence interval [95% CI], 0.1%-4.4%), 8.7% (95% CI, 3.4%-17.2%), and 15.7% (95% CI, 5.7%-30.2%), respectively, and the 12-year PCSM estimates were 1.6% (95% CI, 0.1%-7.6%), 1.4% (95% CI, 0.1%-6.8%), and 8.2% (95% CI, 1.9%-20.7%), respectively. On multivariate analysis, NCCN risk category (low risk: hazard ratio, 6.34 [95% CI, 1.18-34.06; P = .03] and intermediate risk: hazard ratio, 6.98 [95% CI, 1.23-39.73; P = .03]) was found to be significantly associated with the time to metastasis. CONCLUSIONS: Partial prostate treatment with brachytherapy may be associated with higher rates of distant metastasis and PCSM for patients with intermediate-risk disease after long-term follow-up. Treatment of less than the full gland may not be appropriate for this cohort. Cancer 2018. © 2018 American Cancer Society.
Wachinger C, Toews M, Langs G, Wells W, Golland P. Keypoint Transfer for Fast Whole-Body Segmentation. IEEE Trans Med Imaging. 2018.Abstract
We introduce an approach for image segmentation based on sparse correspondences between keypoints in testing and training images. Keypoints represent automatically identified distinctive image locations, where each keypoint correspondence suggests a transformation between images. We use these correspondences to transfer label maps of entire organs from the training images to the test image. The keypoint transfer algorithm includes three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ segmentations. We report segmentation results for abdominal organs in whole-body CT and MRI, as well as in contrast-enhanced CT and MRI. Our method offers a speed-up of about three orders of magnitude in comparison to common multi-atlas segmentation, while achieving an accuracy that compares favorably. Moreover, keypoint transfer does not require the registration to an atlas or a training phase. Finally, the method allows for the segmentation of scans with highly variable field-of-view.
Hong Y, O'Donnell LJ, Savadjiev P, Zhang F, Wassermann D, Pasternak O, Johnson H, Paulsen J, Vonsattel J-P, Makris N, et al. Genetic Load Determines Atrophy in Hand Cortico-striatal Pathways in Presymptomatic Huntington's Disease. Hum Brain Mapp. 2018.Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that causes progressive breakdown of striatal neurons. Standard white matter integrity measures like fractional anisotropy and mean diffusivity derived from diffusion tensor imaging were analyzed in prodromal-HD subjects; however, they studied either a whole brain or specific subcortical white matter structures with connections to cortical motor areas. In this work, we propose a novel analysis of a longitudinal cohort of 243 prodromal-HD individuals and 88 healthy controls who underwent two or more diffusion MRI scans as part of the PREDICT-HD study. We separately trace specific white matter fiber tracts connecting the striatum (caudate and putamen) with four cortical regions corresponding to the hand, face, trunk, and leg motor areas. A multi-tensor tractography algorithm with an isotropic volume fraction compartment allows estimating diffusion of fast-moving extra-cellular water in regions containing crossing fibers and provides quantification of a microstructural property related to tissue atrophy. The tissue atrophy rate is separately analyzed in eight cortico-striatal pathways as a function of CAG-repeats (genetic load) by statistically regressing out age effect from our cohort. The results demonstrate a statistically significant increase in isotropic volume fraction (atrophy) bilaterally in hand fiber connections to the putamen with increasing CAG-repeats, which connects the genetic abnormality (CAG-repeats) to an imaging-based microstructural marker of tissue integrity in specific white matter pathways in HD. Isotropic volume fraction measures in eight cortico-striatal pathways are also correlated significantly with total motor scores and diagnostic confidence levels, providing evidence of their relevance to HD clinical presentation.
Yengul SS, Barbone PE, Madore B. Application of a Forward Model of Axisymmetric Shear Wave Propagation in Viscoelastic Media to Shear Wave Elastography. J Acoust Soc Am. 2018;143 (6) :3266.Abstract
A simple but general solution of Navier's equation for axisymmetric shear wave propagation in a homogeneous isotropic viscoelastic medium is presented. It is well-suited for use as a forward model for some acoustic radiation force impulse based shear wave elastography applications because it does not require precise knowledge of the strength of the source, nor its spatial or temporal distribution. Instead, it depends on two assumptions: (1) the source distribution is axisymmetric and confined to a small region near the axis of symmetry, and (2) the propagation medium is isotropic and homogeneous. The model accounts for the vector polarization of shear waves and exactly represents geometric spreading of the shear wavefield, whether spherical, cylindrical, or neither. It makes no assumption about the frequency dependence of material parameters, i.e., it is material-model independent. Validation using measured shear wavefields excited by acoustic radiation force in a homogeneous gelatin sample show that the model accounts for well over 90% of the measured wavefield "energy." An optimal fit of the model to simulated shear wavefields with noise in a homogeneous viscoelastic medium enables estimation of both the shear storage modulus and shear wave attenuation to within 1%.
Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, et al. Non-rigid Registration of 3D Ultrasound for Neurosurgery using Automatic Feature Detection and Matching . Int J Comput Assist Radiol Surg. 2018.Abstract
PURPOSE: The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. METHODS: A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. RESULTS: Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. CONCLUSIONS: This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.
Gong S, Zhang F, Norton I, Essayed WI, Unadkat P, Rigolo L, Pasternak O, Rathi Y, Hou L, Golby AJ, et al. Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography: Application to Tracking the Arcuate Fasciculus for Neurosurgical Planning. PLoS One. 2018;13 (5) :e0197056.Abstract
PURPOSE: Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. MATERIALS AND METHODS: We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. RESULTS: The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. CONCLUSION: Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.
Essayed WI, Unadkat P, Hosny A, Frisken S, Rassi MS, Mukundan S, Weaver JC, Al-Mefty O, Golby AJ, Dunn IF. 3D Printing and Intraoperative Neuronavigation Tailoring for Skull Base Reconstruction after Extended Endoscopic Endonasal Surgery: Proof of Concept. J Neurosurg. 2018 :1-8.Abstract
OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.
Newitt DC, Malyarenko D, Chenevert TL, Quarles CC, Bell L, Fedorov A, Fennessy F, Jacobs MA, Solaiyappan M, Hectors S, et al. Multisite Concordance of Apparent Diffusion Coefficient Measurements across the NCI Quantitative Imaging Network. J Med Imaging (Bellingham). 2018;5 (1) :011003.Abstract
Diffusion weighted MRI has become ubiquitous in many areas of medicine, including cancer diagnosis and treatment response monitoring. Reproducibility of diffusion metrics is essential for their acceptance as quantitative biomarkers in these areas. We examined the variability in the apparent diffusion coefficient (ADC) obtained from both postprocessing software implementations utilized by the NCI Quantitative Imaging Network and online scan time-generated ADC maps. Phantom and breast studies were evaluated for two ([Formula: see text]) and four ([Formula: see text]) [Formula: see text]-value diffusion metrics. Concordance of the majority of implementations was excellent for both phantom ADC measures and [Formula: see text], with relative biases [Formula: see text] ([Formula: see text]) and [Formula: see text] (phantom [Formula: see text]) but with higher deviations in ADC at the lowest phantom ADC values. [Formula: see text] concordance was good, with typical biases of [Formula: see text] to 3% but higher for online maps. Multiple -value ADC implementations were separated into two groups determined by the fitting algorithm. Intergroup mean ADC differences ranged from negligible for phantom data to 2.8% for [Formula: see text] data. Some higher deviations were found for individual implementations and online parametric maps. Despite generally good concordance, implementation biases in ADC measures are sometimes significant and may be large enough to be of concern in multisite studies.
Gao W, Jiang B, Kacher DF, Fetics B, Nevo E, Lee TC, Jayender J. Real-time Probe Tracking using EM-optical Sensor for MRI-guided Cryoablation . Int J Med Robot. 2018;14 (1).Abstract
BACKGROUND: A method of real-time, accurate probe tracking at the entrance of the MRI bore is developed, which, fused with pre-procedural MR images, will enable clinicians to perform cryoablation efficiently in a large workspace with image guidance. METHODS: Electromagnetic (EM) tracking coupled with optical tracking is used to track the probe. EM tracking is achieved with an MRI-safe EM sensor working under the scanner's magnetic field to compensate the line-of-sight issue of optical tracking. Unscented Kalman filter-based probe tracking is developed to smooth the EM sensor measurements when occlusion occurs and to improve the tracking accuracy by fusing the measurements of two sensors. RESULTS: Experiments with a spine phantom show that the mean targeting errors using the EM sensor alone and using the proposed method are 2.21 mm and 1.80 mm, respectively. CONCLUSION: The proposed method achieves more accurate probe tracking than using an EM sensor alone at the MRI scanner entrance.
Malyarenko D, Fedorov A, Bell L, Prah M, Hectors S, Arlinghaus L, Muzi M, Solaiyappan M, Jacobs M, Fung M, et al. Toward Uniform Implementation of Parametric Map Digital Imaging and Communication in Medicine Standard in Multisite Quantitative Diffusion Imaging Studies. J Med Imaging (Bellingham). 2018;5 (1) :011006.Abstract
This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.
Kim AJ, Basu S, Glass C, Ross EL, Agar N, He Q, Calligaris D. Unique Intradural Inflammatory Mass Containing Precipitated Morphine: Confirmatory Analysis by LESA-MS and MALDI-MS. Pain Pract. 2018.Abstract
Opioids are often used for analgesia via continuous intrathecal delivery by implantable devices. A higher concentration and daily dose of opioid have been postulated as risk factors for intrathecal granuloma formation. We present a 42-year-old female patient with chronic abdominal pain from refractory pancreatitis, with an intrathecal drug delivery device implanted 21 years prior, delivering continuous intrathecal morphine. After many years without concerning physical signs or complaints, with gradual increases in daily morphine dose, she presented with rapidly progressive neurologic deficits, including lower extremity, bladder, and bowel symptoms. These symptoms were determined to be secondary to mass effect and local inflammation related to an intrathecal catheter tip granuloma, detected on magnetic resonance imaging of the spine. The mass was urgently resected. On histopathologic examination, this granuloma was found to be unique, in that in addition to the expected inflammatory components, it appeared to contain precipitated nonpolarizable crystals. These were identified as precipitated morphine using liquid extraction surface analysis-tandem mass spectrometry (LESA-MS/MS) and matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance-mass spectrometry imaging (MALDI-FTICR-MSI). In addition to the unique finding of precipitated morphine crystals, the long-term follow-up of both morphine concentration and daily dose increases provides insight into the formation of intrathecal granulomas.
Özarslan E, Yolcu C, Herberthson M, Knutsson H, Westin C-F. Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal. Front Phys. 2018;6.Abstract
Neuronal and glial projections can be envisioned to be tubes of infinitesimal diameter as far as diffusion magnetic resonance (MR) measurements via clinical scanners are concerned. Recent experimental studies indicate that the decay of the orientationally-averaged signal in white-matter may be characterized by the power-law, () ∝ , where is the wavenumber determined by the parameters of the pulsed field gradient measurements. One particular study by McKinnon . [1] reports a distinctively faster decay in gray-matter. Here, we assess the role of the size and curvature of the neurites and glial arborizations in these experimental findings. To this end, we studied the signal decay for diffusion along general curves at all three temporal regimes of the traditional pulsed field gradient measurements. We show that for curvy projections, employment of longer pulse durations leads to a disappearance of the decay, while such decay is robust when narrow gradient pulses are used. Thus, in clinical acquisitions, the lack of such a decay for a fibrous specimen can be seen as indicative of fibers that are curved. We note that the above discussion is valid for an intermediate range of -values as the true asymptotic behavior of the signal decay is () ∝ for narrow pulses (through Debye-Porod law) or steeper for longer pulses. This study is expected to provide insights for interpreting the diffusion-weighted images of the central nervous system and aid in the design of acquisition strategies.
Tokuda J, Chauvin L, Ninni B, Kato T, King F, Tuncali K, Hata N. Motion Compensation for MRI-compatible Patient-mounted Needle Guide Device: Estimation of Targeting Accuracy in MRI-guided Kidney Cryoablations. Phys Med Biol. 2018;63 (8) :085010.Abstract
Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were [Formula: see text] mm, [Formula: see text] mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p  <  0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm ([Formula: see text]) in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.
Zhang SH, Maier SE, Panych LP. Improved Spatial Localization in Magnetic Resonance Spectroscopic Imaging with Two-dimensional PSF-Choice Encoding. J Magn Reson. 2018;290 :18-28.Abstract
PURPOSE: Magnetic resonance spectroscopic imaging (MRSI), under low-spatial resolution settings, often suffers signal contamination from neighboring voxels due to ringing artifacts. Spatial localization can be improved by constraining the point-spread-function (PSF). Here the effectiveness of the two-dimensional PSF-Choice technique in providing improved spatial localization for MRSI is demonstrated. THEORY AND METHODS: The PSF-Choice technique constrains the PSF to a desired shape by manipulating the weighting of RF excitation pulse throughout phase-encode steps. Based on a Point REsolved SpectroScopy (PRESS)-type sequence, PSF-Choice encoding was implemented along two dimensions to excite a two-dimensional Gaussian profile, by replacing the usual RF excitation pulse with a train of pulses that is modified at each phase-encoding step. The method was proven mathematically, and demonstrated experimentally in phantoms containing prostate relevant metabolic compounds of choline, creatine and citrate. RESULTS: Using a dedicated prostate-mimicking spectroscopy phantom surrounded by oil, it was found that there is significantly less signal contamination from oil for PSF-Choice encoding compared with standard phase encoding. In particular, with standard phase encoding, there was a significant difference (p = 0.014) between ratios of Choline + Creatine to Citrate for voxels well within the phantom compared to voxels within the phantom but near the boundary with oil. The ratios in boundary voxels were also significantly different (p = 0.035) from reference values obtained using the prostate phantom with no oil present. In contrast, no significant differences were found in comparisons of these ratios when encoding with PSF-Choice. CONCLUSION: The PSF-Choice scheme applied along two dimensions produces MR spectroscopic images with substantially reduced truncation artifacts and spectral contamination.
Langkilde F, Kobus T, Fedorov A, Dunne R, Tempany C, Mulkern RV, Maier SE. Evaluation of Fitting Models for Prostate Tissue Characterization using Extended-range b-factor Diffusion-weighted Imaging. Magn Reson Med. 2018;79 (4) :2346-58.Abstract
PURPOSE: To compare the fitting and tissue discrimination performance of biexponential, kurtosis, stretched exponential, and gamma distribution models for high b-factor diffusion-weighted images in prostate cancer. METHODS: Diffusion-weighted images with 15 b-factors ranging from b = 0 to 3500 s/mmwere obtained in 62 prostate cancer patients. Pixel-wise signal decay fits for each model were evaluated with the Akaike Information Criterion (AIC). Parameter values for each model were determined within normal prostate and the index lesion. Their potential to differentiate normal from cancerous tissue was investigated through receiver operating characteristic analysis and comparison with Gleason score. RESULTS: The biexponential slow diffusion fraction f, the apparent kurtosis diffusion coefficient ADC, and the excess kurtosis factor K differ significantly among normal peripheral zone (PZ), normal transition zone (TZ), tumor PZ, and tumor TZ. Biexponential and gamma distribution models result in the lowest AIC, indicating a superior fit. Maximum areas under the curve (AUCs) of all models ranged from 0.93 to 0.96 for the PZ and from 0.95 to 0.97 for the TZ. Similar AUCs also result from the apparent diffusion coefficient (ADC) of a monoexponential fit to a b-factor sub-range up to 1250 s/mm. For kurtosis and stretched exponential models, single parameters yield the highest AUCs, whereas for the biexponential and gamma distribution models, linear combinations of parameters produce the highest AUCs. Parameters with high AUC show a trend in differentiating low from high Gleason score, whereas parameters with low AUC show no such ability. CONCLUSION: All models, including a monoexponential fit to a lower-b sub-range, achieve similar AUCs for discrimination of normal and cancer tissue. The biexponential model, which is favored statistically, also appears to provide insight into disease-related microstructural changes. Magn Reson Med 79:2346-2358, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Albi A, Meola A, Zhang F, Kahali P, Rigolo L, Tax CMW, Ciris PA, Essayed WI, Unadkat P, Norton I, et al. Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects. J Neuroimaging. 2018;28 (2) :173-82.Abstract
BACKGROUND AND PURPOSE: Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. METHODS: Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. RESULTS: Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. CONCLUSIONS: Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings.
Nilsson M, Larsson J, Lundberg D, Szczepankiewicz F, Witzel T, Westin C-F, Bryskhe K, Topgaard D. Liquid Crystal Phantom for Validation of Microscopic Diffusion Anisotropy Measurements on Clinical MRI Systems. Magn Reson Med. 2018;79 (3) :1817-28.Abstract
PURPOSE: To develop a phantom for validating MRI pulse sequences and data processing methods to quantify microscopic diffusion anisotropy in the human brain. METHODS: Using a liquid crystal consisting of water, detergent, and hydrocarbon, we designed a 0.5-L spherical phantom showing the theoretically highest possible degree of microscopic anisotropy. Data were acquired on the Connectome scanner using echo-planar imaging signal readout and diffusion encoding with axisymmetric b-tensors of varying magnitude, anisotropy, and orientation. The mean diffusivity, fractional anisotropy (FA), and microscopic FA (µFA) parameters were estimated. RESULTS: The phantom was observed to have values of mean diffusivity similar to brain tissue, and relaxation times compatible with echo-planar imaging echo times on the order of 100 ms. The estimated values of µFA were at the theoretical maximum of 1.0, whereas the values of FA spanned the interval from 0.0 to 0.8 as a result of varying orientational order of the anisotropic domains within each voxel. CONCLUSIONS: The proposed phantom can be manufactured by mixing three widely available chemicals in volumes comparable to a human head. The acquired data are in excellent agreement with theoretical predictions, showing that the phantom is ideal for validating methods for measuring microscopic diffusion anisotropy on clinical MRI systems. Magn Reson Med 79:1817-1828, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Schmidt EJ, Halperin HR. MRI use for Atrial Tissue Characterization in Arrhythmias and for EP Procedure Guidance. Int J Cardiovasc Imaging. 2018;34 (1) :81-95.Abstract
We review the utilization of magnetic resonance imaging methods for classifying atrial tissue properties that act as a substrate for common cardiac arrhythmias, such as atrial fibrillation. We then review state-of-the-art methods for mapping this substrate as a predicate for treatment, as well as methods used to ablate the electrical pathways that cause arrhythmia and restore patients to sinus rhythm.
Jiang B, Gao W, Kacher D, Nevo E, Fetics B, Lee TC, Jayender J. Kalman Filter-based EM-optical Sensor Fusion for Needle Deflection Estimation. Int J Comput Assist Radiol Surg. 2018;13 (4) :573-83.Abstract
PURPOSE: In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. METHODS: In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. RESULTS: Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. CONCLUSION: This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.