Breast Cancer Surgery Procedure Publications

Melissa A Mallory, Yasuaki Sagara, Fatih Aydogan, Stephen Desantis, Jagadeesan Jayender, Diana Caragacianu, Eva Gombos, Kirby G. Vosburgh, Ferenc A Jolesz, and Mehra Golshan. 2017. “Feasibility of Intraoperative Breast MRI and the Role of Prone Versus Supine Positioning in Surgical Planning for Breast-Conserving Surgery.” Breast J, 23, 6, Pp. 713-7.Abstract
We assessed the feasibility of supine intraoperative MRI (iMRI) during breast-conserving surgery (BCS), enrolling 15 patients in our phase I trial between 2012 and 2014. Patients received diagnostic prone MRI, BCS, pre-excisional supine iMRI, and postexcisional supine iMRI. Feasibility was assessed based on safety, sterility, duration, and image-quality. Twelve patients completed the study; mean duration = 114 minutes; all images were adequate; no complications, safety, or sterility issues were encountered. Substantial tumor-associated changes occurred (mean displacement = 67.7 mm, prone-supine metric, n = 7). We have demonstrated iMRI feasibility for BCS and have identified potential limitations of prone breast MRI that may impact surgical planning.
Eva C Gombos, Jagadeesan Jayender, Danielle M Richman, Diana L Caragacianu, Melissa A Mallory, Ferenc A Jolesz, and Mehra Golshan. 2016. “Intraoperative Supine Breast MR Imaging to Quantify Tumor Deformation and Detection of Residual Breast Cancer: Preliminary Results.” Radiology, 281, 3, Pp. 720-9.Abstract
Purpose To use intraoperative supine magnetic resonance (MR) imaging to quantify breast tumor deformation and displacement secondary to the change in patient positioning from imaging (prone) to surgery (supine) and to evaluate residual tumor immediately after breast-conserving surgery (BCS). Materials and Methods Fifteen women gave informed written consent to participate in this prospective HIPAA-compliant, institutional review board-approved study between April 2012 and November 2014. Twelve patients underwent lumpectomy and postsurgical intraoperative supine MR imaging. Six of 12 patients underwent both pre- and postsurgical supine MR imaging. Geometric, structural, and heterogeneity metrics of the cancer and distances of the tumor from the nipple, chest wall, and skin were computed. Mean and standard deviations of the changes in volume, surface area, compactness, spherical disproportion, sphericity, and distances from key landmarks were computed from tumor models. Imaging duration was recorded. Results The mean differences in tumor deformation metrics between prone and supine imaging were as follows: volume, 23.8% (range, -30% to 103.95%); surface area, 6.5% (range, -13.24% to 63%); compactness, 16.2% (range, -23% to 47.3%); sphericity, 6.8% (range, -9.10% to 20.78%); and decrease in spherical disproportion, -11.3% (range, -60.81% to 76.95%). All tumors were closer to the chest wall on supine images than on prone images. No evidence of residual tumor was seen on MR images obtained after the procedures. Mean duration of pre- and postoperative supine MR imaging was 25 minutes (range, 18.4-31.6 minutes) and 19 minutes (range, 15.1-22.9 minutes), respectively. Conclusion Intraoperative supine breast MR imaging, when performed in conjunction with standard prone breast MR imaging, enables quantification of breast tumor deformation and displacement secondary to changes in patient positioning from standard imaging (prone) to surgery (supine) and may help clinicians evaluate for residual tumor immediately after BCS. (©) RSNA, 2016 Online supplemental material is available for this article.
Eva C Gombos, Jayender Jagadeesan, Danielle M Richman, and Daniel F Kacher. 2015. “Magnetic Resonance Imaging-Guided Breast Interventions: Role in Biopsy Targeting and Lumpectomies.” Magn Reson Imaging Clin N Am, 23, 4, Pp. 547-61.Abstract
Contrast-enhanced breast MR imaging is increasingly being used to diagnose breast cancer and to perform biopsy procedures. The American Cancer Society has advised women at high risk for breast cancer to have breast MR imaging screening as an adjunct to screening mammography. This article places special emphasis on biopsy and operative planning involving MR imaging and reviews use of breast MR imaging in monitoring response to neoadjuvant chemotherapy. Described are peer-reviewed data on currently accepted MR imaging-guided procedures for addressing benign and malignant breast diseases, including intraoperative imaging.
David Calligaris, Diana Caragacianu, Xiaohui Liu, Isaiah Norton, Christopher J Thompson, Andrea L Richardson, Mehra Golshan, Michael L Easterling, Sandro Santagata, Deborah A Dillon, Ferenc A Jolesz, and Nathalie YR Agar. 2014. “Application of Desorption Electrospray Ionization Mass Spectrometry Imaging in Breast Cancer Margin Analysis.” Proc Natl Acad Sci U S A, 111, 42, Pp. 15184-9.Abstract

Distinguishing tumor from normal glandular breast tissue is an important step in breast-conserving surgery. Because this distinction can be challenging in the operative setting, up to 40% of patients require an additional operation when traditional approaches are used. Here, we present a proof-of-concept study to determine the feasibility of using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) for identifying and differentiating tumor from normal breast tissue. We show that tumor margins can be identified using the spatial distributions and varying intensities of different lipids. Several fatty acids, including oleic acid, were more abundant in the cancerous tissue than in normal tissues. The cancer margins delineated by the molecular images from DESI-MSI were consistent with those margins obtained from histological staining. Our findings prove the feasibility of classifying cancerous and normal breast tissues using ambient ionization MSI. The results suggest that an MS-based method could be developed for the rapid intraoperative detection of residual cancer tissue during breast-conserving surgery.

Jagadaeesan Jayender, Sona Chikarmane, Ferenc A Jolesz, and Eva Gombos. 2014. “Automatic Segmentation of Invasive Breast Carcinomas from Dynamic Contrast-Enhanced MRi using Time Series Analysis.” J Magn Reson Imaging, 40, 2, Pp. 467-75.Abstract

PURPOSE: To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast-enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. MATERIALS AND METHODS: Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise, and fitting algorithms. We modeled the underlying dynamics of the tumor by an LDS and used the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist's segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). RESULTS: The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared with the radiologist's segmentation and 82.1% accuracy and 100% sensitivity when compared with the CADstream output. The overlap of the algorithm output with the radiologist's segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72, respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC = 0.95. CONCLUSION: The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI.

Mehra Golshan, Yasuaki Sagara, Barbara Wexelman, Fatih Aydogan, Stephen Desantis, H Elise Min, Kirby Vosburgh, Jayender Jagadeesan, Diana Caragacianu, Eva Gombos, and Ferenc Andras Jolesz. 2014. “Pilot Study to Evaluate Feasibility of Image-Guided Breast-Conserving Therapy in the Advanced Multimodal Image-Guided Operating (AMIGO) Suite.” Ann Surg Oncol, 21, 10, Pp. 3356-7.Abstract

BACKGROUND: The rate of reexcision in breast-conserving surgery remains high, leading to delay in initiation of adjuvant therapy, increased cost, increased complications, and negative psychological impact to the patient.1 (-) 3 We initiated a phase 1 clinical trial to determine the feasibility of the use of intraoperative magnetic resonance imaging (MRI) to assess margins in the advanced multimodal image-guided operating (AMIGO) suite. METHODS: All patients received contrast-enhanced three-dimensional MRI while under general anesthesia in the supine position, followed by standard BCT with or without wire guidance and sentinel node biopsy. Additional margin reexcision was performed of suspicious margins and correlated to final pathology (Fig. 1). Feasibility was assessed via two components: demonstration of safety and sterility and acceptable duration of the operation and imaging; and adequacy of intraoperative MRI imaging for interpretation and its comparison to final pathology. Fig. 1 Schema of AMIGO trial RESULTS: Eight patients (mean age 48.5 years), 4 with stage I breast cancer and 4 with stage II breast cancer, were recruited. All patients underwent successful BCT in the AMIGO suite with no AMIGO-specific complications or break in sterility during surgery. The mean operative time was 113 min (range 93-146 min). CONCLUSIONS: Our experience with AMIGO suggests that it is feasible to use intraoperative MRI imaging to evaluate margin assessment in real time. Further research is required to identify modalities that will lead to a reduction in reexcision in breast cancer therapy.