Frank Preiswerk, Matthew Toews, Cheng-Chieh Cheng, Jr-yuan George Chiou, Chang-Sheng Mei, Lena F Schaefer, W. Scott Hoge, Benjamin M Schwartz, Lawrence P Panych, and Bruno Madore. 2016. “
Hybrid MRI Ultrasound Acquisitions, and Scannerless Real-time Imaging.” Magn Reson Med, 78, 3, Pp. 897-908.
Abstract
PURPOSE: To combine MRI, ultrasound, and computer science methodologies toward generating MRI contrast at the high frame rates of ultrasound, inside and even outside the MRI bore. METHODS: A small transducer, held onto the abdomen with an adhesive bandage, collected ultrasound signals during MRI. Based on these ultrasound signals and their correlations with MRI, a machine-learning algorithm created synthetic MR images at frame rates up to 100 per second. In one particular implementation, volunteers were taken out of the MRI bore with the ultrasound sensor still in place, and MR images were generated on the basis of ultrasound signal and learned correlations alone in a "scannerless" manner. RESULTS: Hybrid ultrasound-MRI data were acquired in eight separate imaging sessions. Locations of liver features, in synthetic images, were compared with those from acquired images: The mean error was 1.0 pixel (2.1 mm), with best case 0.4 and worst case 4.1 pixels (in the presence of heavy coughing). For results from outside the bore, qualitative validation involved optically tracked ultrasound imaging with/without coughing. CONCLUSION: The proposed setup can generate an accurate stream of high-speed MR images, up to 100 frames per second, inside or even outside the MR bore. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
J Duryea, C Cheng, LF Schaefer, S. Smith, and B Madore. 2016. “
Integration of Accelerated MRI and Post-Processing Software: A Promising Method for Studies of Knee Osteoarthritis.” Osteoarthritis Cartilage, 24, 11, Pp. 1905-9.
AbstractOBJECTIVE: Magnetic resonance imaging (MRI) is a widely used imaging modality for studies of knee osteoarthritis (OA). Compared to radiography, MRI offers exceptional soft tissue imaging and true three-dimensional (3D) visualization. However, MRI is expensive both due to the cost of acquisition and evaluation of the images. The goal of our study is to develop a new method to address the cost of MRI by combining innovative acquisition methods and automated post-processing software. METHODS: Ten healthy volunteers were scanned with three different MRI protocols: A standard 3D dual-echo steady state (DESS) pulse sequence, an accelerated DESS (DESS), acquired at approximately half the time compared to DESS, and a multi-echo time DESS (DESS), which is capable of producing measurements of T2 relaxation time. A software tool was used to measure cartilage volume. Accuracy was quantified by comparing DESS to DESS and DESS and precision was measured using repeat readings and acquisitions. T2 precision was determined using duplicate DESS acquisitions. Intra-class correlation coefficients (ICCs), root-mean square standard deviation (RMSSD), and the coefficient of variation (CoV) were used to quantify accuracy and precision. RESULTS: The accuracies of DESS and DESS were CoV = 3.7% and CoV = 6.6% respectively, while precision was 3.8%, 3.0%, and 3.1% for DESS, DESS and DESS. T2 repositioning precision was 5.8%. CONCLUSION: The results demonstrate that accurate and precise quantification of cartilage volume is possible using a combination of substantially faster MRI acquisition and post-processing software. Precise measurements of cartilage T2 and volume can be made using the same acquisition.
Jørn Bersvendsen, Matthew Toews, Adriyana Danudibroto, William M Wells, Stig Urheim, Raúl San José Estépar, and Eigil Samset. 2016. “
Robust Spatio-Temporal Registration of 4D Cardiac Ultrasound Sequences.” Proc SPIE Int Soc Opt Eng, 9790.
AbstractRegistration of multiple 3D ultrasound sectors in order to provide an extended field of view is important for the appreciation of larger anatomical structures at high spatial and temporal resolution. In this paper, we present a method for fully automatic spatio-temporal registration between two partially overlapping 3D ultrasound sequences. The temporal alignment is solved by aligning the normalized cross correlation-over-time curves of the sequences. For the spatial alignment, corresponding 3D Scale Invariant Feature Transform (SIFT) features are extracted from all frames of both sequences independently of the temporal alignment. A rigid transform is then calculated by least squares minimization in combination with random sample consensus. The method is applied to 16 echocardiographic sequences of the left and right ventricles and evaluated against manually annotated temporal events and spatial anatomical landmarks. The mean distances between manually identified landmarks in the left and right ventricles after automatic registration were (mean ± SD) 4.3 ± 1.2 mm compared to a reference error of 2.8 ± 0.6 mm with manual registration. For the temporal alignment, the absolute errors in valvular event times were 14.4 ± 11.6 ms for Aortic Valve (AV) opening, 18.6 ± 16.0 ms for AV closing, and 34.6 ± 26.4 ms for mitral valve opening, compared to a mean inter-frame time of 29 ms.