Neurosurgery Research Publications

2019
Inês Machado, Matthew Toews, Elizabeth George, Prashin Unadkat, Walid Essayed, Jie Luo, Pedro Teodoro, Herculano Carvalho, Jorge Martins, Polina Golland, Steve Pieper, Sarah Frisken, Alexandra Golby, William Wells, and Yangming Ou. 2019. “Deformable MRI-Ultrasound Registration using Correlation-based Attribute Matching for Brain Shift Correction: Accuracy and Generality in Multi-site Data.” Neuroimage, 202, Pp. 116094.Abstract
Intraoperative tissue deformation, known as brain shift, decreases the benefit of using preoperative images to guide neurosurgery. Non-rigid registration of preoperative magnetic resonance (MR) to intraoperative ultrasound (US) has been proposed as a means to compensate for brain shift. We focus on the initial registration from MR to predurotomy US. We present a method that builds on previous work to address the need for accuracy and generality of MR-iUS registration algorithms in multi-site clinical data. To improve accuracy of registration, we use high-dimensional texture attributes instead of image intensities and propose to replace the standard difference-based attribute matching with correlation-based attribute matching. We also present a strategy that deals explicitly with the large field-of-view mismatch between MR and iUS images. We optimize key parameters across independent MR-iUS brain tumor datasets acquired at three different institutions, with a total of 43 tumor patients and 758 corresponding landmarks to validate the registration algorithm. Despite differences in imaging protocols, patient demographics and landmark distributions, our algorithm was able to reduce landmark errors prior to registration in three data sets (5.37 ± 4.27, 4.18 ± 1.97 and 6.18 ± 3.38 mm, respectively) to a consistently low level (2.28 ± 0.71, 2.08 ± 0.37 and 2.24 ± 0.78 mm, respectively). Our algorithm is compared to 15 other algorithms that have been previously tested on MR-iUS registration and it is competitive with the state-of-the-art on multiple datasets. We show that our algorithm has one of the lowest errors in all datasets (accuracy), and this is achieved while sticking to a fixed set of parameters for multi-site data (generality). In contrast, other algorithms/tools of similar performance need per-dataset parameter tuning (high accuracy but lower generality), and those that stick to fixed parameters have larger errors or inconsistent performance (generality but not the top accuracy). We further characterized landmark errors according to brain regions and tumor types, a topic so far missing in the literature. We found that landmark errors were higher in high-grade than low-grade glioma patients, and higher in tumor regions than in other brain regions.
Prashin Unadkat, Luca Fumagalli, Laura Rigolo, Mark G Vangel, Geoffrey S Young, Raymond Huang, Srinivasan Mukundan, Alexandra Golby, and Yanmei Tie. 2019. “Functional MRI Task Comparison for Language Mapping in Neurosurgical Patients.” J Neuroimaging, 29, 3, Pp. 348-56.Abstract
BACKGROUND AND PURPOSE: Language task-based functional MRI (fMRI) is increasingly used for presurgical planning in patients with brain lesions. Different paradigms elicit activations of different components of the language network. The aim of this study is to optimize fMRI clinical usage by comparing the effectiveness of three language tasks for language lateralization and localization in a large group of patients with brain lesions. METHODS: We analyzed fMRI data from a sequential retrospective cohort of 51 patients with brain lesions who underwent presurgical fMRI language mapping. We compared the effectiveness of three language tasks (Antonym Generation, Sentence Completion (SC), and Auditory Naming) for lateralizing language function and for activating cortex within patient-specific regions-of-interest representing eloquent language areas, and assessed the degree of spatial overlap of the areas of activation elicited by each task. RESULTS: The tasks were similarly effective for lateralizing language within the anterior language areas. The SC task produced higher laterality indices within the posterior language areas and had a significantly higher agreement with the clinical report. Dice coefficients between the task pairs were in the range of .351-.458, confirming substantial variation in the components of the language network activated by each task. CONCLUSIONS: SC task consistently produced large activations within the dominant hemisphere and was more effective for lateralizing language within the posterior language areas. The low degree of spatial overlap among the tasks strongly supports the practice of using a battery of tasks to help the surgeon to avoid eloquent language areas.
Sankha S Basu, Madison H McMinn, Begoña Giménez-Cassina Lopéz, Michael S Regan, Elizabeth C Randall, Amanda R Clark, Christopher R Cox, and Nathalie YR Agar. 2019. “Metal Oxide Laser Ionization Mass Spectrometry Imaging (MOLI MSI) Using Cerium(IV) Oxide.” Anal Chem, 91, 10, Pp. 6800-7.Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a powerful technique for spatially resolved metabolomics. A variation on MALDI, termed metal oxide laser ionization (MOLI), capitalizes on the unique property of cerium(IV) oxide (CeO) to induce laser-catalyzed fatty acyl cleavage from lipids and has been utilized for bacterial identification. In this study, we present the development and utilization of CeO as an MSI catalyst. The method was developed using a MALDI TOF instrument in negative ion mode, equipped with a high frequency laser. Instrument parameters for MOLI MS fatty acid catalysis with CeO were optimized with phospholipid standards and fatty acid catalysis was confirmed using lipid extracts from reference bacterial strains, and sample preparation was optimized using mouse brain tissue. MOLI MSI was applied to the imaging of normal mouse brain revealing differentiable fatty acyl pools in myelinated and nonmyelinated regions. Similarly, MOLI MSI showed distinct fatty acyl composition in tumor regions of a patient derived xenograft mouse model of glioblastoma. To assess the potential of MOLI MSI to detect pathogens directly from tissue, a pseudoinfection model was prepared by spotting Escherichia coli lipid extracts on mouse brain tissue sections and imaged by MOLI MSI. The spotted regions were molecularly resolved from the supporting mouse brain tissue by the diagnostic odd-chained fatty acids and reflected control bacterial MOLI MS signatures. We describe MOLI MSI for the first time and highlight its potential for spatially resolved fatty acyl analysis, characterization of fatty acyl composition in tumors, and its potential for pathogen detection directly from tissue.
Fan Zhang, Lipeng Ning, Lauren J O'Donnell, and Ofer Pasternak. 2019. “MK-curve - Characterizing the Relation between Mean Kurtosis and Alterations in the Diffusion MRI Signal.” Neuroimage, 196, Pp. 68-80.Abstract
Diffusion kurtosis imaging (DKI) is a diffusion MRI (dMRI) technique to quantify brain microstructural properties. While DKI measures are sensitive to tissue alterations, they are also affected by signal alterations caused by imaging artifacts such as noise, motion and Gibbs ringing. Consequently, DKI often yields output parameter values (e.g. mean kurtosis; MK) that are implausible. These include implausible values that are outside of the range dictated by physics/biology, and visually apparent implausible values that form unexpected discontinuities, being too high or too low comparing with their neighborhood. These implausible values will introduce bias into any following data analyses (e.g. between-population statistical computation). Existing studies have attempted to correct implausible DKI parameter values in multiple ways; however, these approaches are not always effective. In this study, we propose a novel method for detecting and correcting voxels with implausible values to enable improved DKI parameter estimation. In particular, we focus on MK parameter estimation. We first characterize the relation between MK and alterations in the dMRI signal including diffusion weighted images (DWIs) and the baseline (b0) images. This is done by calculating MK for a range of synthetic DWI or b0 for each voxel, and generating curves (MK-curve) representing how alterations to the input dMRI signals affect the resulting output MK. We find that voxels with implausible MK values are more likely caused by artifacts in the b0 images than artifacts in DWIs with higher b-values. Accordingly, two characteristic b0 values, which define a range of synthetic b0 values that generate implausible MK values, are identified on the MK-curve. Based on this characterization, we propose an automatic approach for detection of voxels with implausible MK values by comparing a voxel's original b0 signal to the identified two characteristic b0 values, along with a correction strategy to replace the original b0 in each detected implausible voxel with a synthetic b0 value computed from the MK-curve. We evaluate the method on a DKI phantom dataset and dMRI datasets from the Human Connectome Project (HCP), and we compare the proposed correction method with other previously proposed correction methods. Results show that our proposed method is able to identify and correct most voxels with implausible DKI parameter values as well as voxels with implausible diffusion tensor parameter values.
Elizabeth C Randall, Giorgia Zadra, Paolo Chetta, Begona GC Lopez, Sudeepa Syamala, Sankha S Basu, Jeffrey N Agar, Massimo Loda, Clare M Tempany, Fiona M Fennessy, and Nathalie YR Agar. 2019. “Molecular Characterization of Prostate Cancer with Associated Gleason Score using Mass Spectrometry Imaging.” Mol Cancer Res, 17, 5, Pp. 1155-65.Abstract
Diagnosis of prostate cancer is based on histological evaluation of tumor architecture using a system known as the 'Gleason score'. This diagnostic paradigm, while the standard of care, is time-consuming, shows intra-observer variability and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of pre-cancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. Implications: In this study we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.
Thomas C Lee, Jeffrey P Guenette, Ziev B Moses, and John H Chi. 2019. “MRI-Guided Cryoablation of Epidural Malignancies in the Spinal Canal Resulting in Neural Decompression and Regrowth of Bone.” AJR Am J Roentgenol, 212, 1, Pp. 205-8.Abstract
OBJECTIVE: The purpose of this article is to describe the use of MRI to safely monitor cryoablation for the treatment of spinal epidural malignancies. CONCLUSION: Use of MRI guidance to monitor percutaneous cryoablation allows ablation margins more distinct than those allowed by heat-based ablation modalities. MRI-guided cryoablation is a feasible option for treating epidural tumors involving the spinal canal, resulting in successful decompression of the tumor away from the spinal cord with regrowth of previously eroded bone around the spinal canal.
Sonja Stojanovski, Daniel Felsky, Joseph D Viviano, Saba Shahab, Rutwik Bangali, Christie L Burton, Gabriel A Devenyi, Lauren J O'Donnell, Peter Szatmari, Mallar M Chakravarty, Stephanie Ameis, Russell Schachar, Aristotle N Voineskos, and Anne L Wheeler. 2019. “Polygenic Risk and Neural Substrates of Attention-Deficit/Hyperactivity Disorder Symptoms in Youths With a History of Mild Traumatic Brain Injury.” Biol Psychiatry, 85, 5, Pp. 408-16.Abstract
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a major sequela of traumatic brain injury (TBI) in youths. The objective of this study was to examine whether ADHD symptoms are differentially associated with genetic risk and brain structure in youths with and without a history of TBI. METHODS: Medical history, ADHD symptoms, genetic data, and neuroimaging data were obtained from a community sample of youths. ADHD symptom severity was compared between those with and without TBI (TBI n = 418, no TBI n = 3193). The relationship of TBI history, genetic vulnerability, brain structure, and ADHD symptoms was examined by assessing 1) ADHD polygenic score (discovery sample ADHD n = 19,099, control sample n = 34,194), 2) basal ganglia volumes, and 3) fractional anisotropy in the corpus callosum and corona radiata. RESULTS: Youths with TBI reported greater ADHD symptom severity compared with those without TBI. Polygenic score was positively associated with ADHD symptoms in youths without TBI but not in youths with TBI. The negative association between the caudate volume and ADHD symptoms was not moderated by a history of TBI. However, the relationship between ADHD symptoms and structure of the genu of the corpus callosum was negative in youths with TBI and positive in youths without TBI. CONCLUSIONS: The identification of distinct ADHD etiology in youths with TBI provides neurobiological insight into the clinical heterogeneity in the disorder. Results indicate that genetic predisposition to ADHD does not increase the risk for ADHD symptoms associated with TBI. ADHD symptoms associated with TBI may be a result of a mechanical insult rather than neurodevelopmental factors.
Sankha S Basu, Michael S Regan, Elizabeth C Randall, Walid M Abdelmoula, Amanda R Clark, Begoña Gimenez-Cassina Lopez, Dale S Cornett, Andreas Haase, Sandro Santagata, and Nathalie YR Agar. 2019. “Rapid MALDI Mass Spectrometry Imaging for Surgical Pathology.” NPJ Precis Oncol, 3, Pp. 17.Abstract
Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is an emerging analytical technique, which generates spatially resolved proteomic and metabolomic images from tissue specimens. Conventional MALDI MSI processing and data acquisition can take over 30 min, limiting its clinical utility for intraoperative diagnostics. We present a rapid MALDI MSI method, completed under 5 min, including sample preparation and analysis, providing a workflow compatible with the clinical frozen section procedure.
Björn Lampinen, Filip Szczepankiewicz, Mikael Novén, Danielle van Westen, Oskar Hansson, Elisabet Englund, Johan Mårtensson, Carl-Fredrik Westin, and Markus Nilsson. 2019. “Searching for the Neurite Density with Diffusion MRI: Challenges for Biophysical Modeling.” Hum Brain Mapp, 40, 8, Pp. 2529-45.Abstract
In vivo mapping of the neurite density with diffusion MRI (dMRI) is a high but challenging aim. First, it is unknown whether all neurites exhibit completely anisotropic ("stick-like") diffusion. Second, the "density" of tissue components may be confounded by non-diffusion properties such as T2 relaxation. Third, the domain of validity for the estimated parameters to serve as indices of neurite density is incompletely explored. We investigated these challenges by acquiring data with "b-tensor encoding" and multiple echo times in brain regions with low orientation coherence and in white matter lesions. Results showed that microscopic anisotropy from b-tensor data is associated with myelinated axons but not with dendrites. Furthermore, b-tensor data together with data acquired for multiple echo times showed that unbiased density estimates in white matter lesions require data-driven estimates of compartment-specific T2 values. Finally, the "stick" fractions of different biophysical models could generally not serve as neurite density indices across the healthy brain and white matter lesions, where outcomes of comparisons depended on the choice of constraints. In particular, constraining compartment-specific T2 values was ambiguous in the healthy brain and had a large impact on estimated values. In summary, estimating neurite density generally requires accounting for different diffusion and/or T2 properties between axons and dendrites. Constrained "index" parameters could be valid within limited domains that should be delineated by future studies.
Fan Zhang, Ye Wu, Isaiah Norton, Yogesh Rathi, Alexandra J Golby, and Lauren J O'Donnell. 2019. “Test-retest Reproducibility of White Matter Parcellation using Diffusion MRI Tractography Fiber Clustering.” Hum Brain Mapp, 40, 10, Pp. 3041-57.Abstract
There are two popular approaches for automated white matter parcellation using diffusion MRI tractography, including fiber clustering strategies that group white matter fibers according to their geometric trajectories and cortical-parcellation-based strategies that focus on the structural connectivity among different brain regions of interest. While multiple studies have assessed test-retest reproducibility of automated white matter parcellations using cortical-parcellation-based strategies, there are no existing studies of test-retest reproducibility of fiber clustering parcellation. In this work, we perform what we believe is the first study of fiber clustering white matter parcellation test-retest reproducibility. The assessment is performed on three test-retest diffusion MRI datasets including a total of 255 subjects across genders, a broad age range (5-82 years), health conditions (autism, Parkinson's disease and healthy subjects), and imaging acquisition protocols (three different sites). A comprehensive evaluation is conducted for a fiber clustering method that leverages an anatomically curated fiber clustering white matter atlas, with comparison to a popular cortical-parcellation-based method. The two methods are compared for the two main white matter parcellation applications of dividing the entire white matter into parcels (i.e., whole brain white matter parcellation) and identifying particular anatomical fiber tracts (i.e., anatomical fiber tract parcellation). Test-retest reproducibility is measured using both geometric and diffusion features, including volumetric overlap (wDice) and relative difference of fractional anisotropy. Our experimental results in general indicate that the fiber clustering method produced more reproducible white matter parcellations than the cortical-parcellation-based method.
2018
Walid I Essayed, Prashin Unadkat, Ahmed Hosny, Sarah Frisken, Marcio S Rassi, Srinivasan Mukundan, James C Weaver, Ossama Al-Mefty, Alexandra J Golby, and Ian F Dunn. 2018. “3D Printing and Intraoperative Neuronavigation Tailoring for Skull Base Reconstruction after Extended Endoscopic Endonasal Surgery: Proof of Concept.” J Neurosurg, 130, 1, Pp. 248-55.Abstract
OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.
Fan Zhang, Ye Wu, Isaiah Norton, Laura Rigolo, Yogesh Rathi, Nikos Makris, and Lauren J O'Donnell. 2018. “An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan.” Neuroimage, 179, Pp. 429-47.Abstract
This work presents an anatomically curated white matter atlas to enable consistent white matter tract parcellation across different populations. Leveraging a well-established computational pipeline for fiber clustering, we create a tract-based white matter atlas including information from 100 subjects. A novel anatomical annotation method is proposed that leverages population-based brain anatomical information and expert neuroanatomical knowledge to annotate and categorize the fiber clusters. A total of 256 white matter structures are annotated in the proposed atlas, which provides one of the most comprehensive tract-based white matter atlases covering the entire brain to date. These structures are composed of 58 deep white matter tracts including major long range association and projection tracts, commissural tracts, and tracts related to the brainstem and cerebellar connections, plus 198 short and medium range superficial fiber clusters organized into 16 categories according to the brain lobes they connect. Potential false positive connections are annotated in the atlas to enable their exclusion from analysis or visualization. In addition, the proposed atlas allows for a whole brain white matter parcellation into 800 fiber clusters to enable whole brain connectivity analyses. The atlas and related computational tools are open-source and publicly available. We evaluate the proposed atlas using a testing dataset of 584 diffusion MRI scans from multiple independently acquired populations, across genders, the lifespan (1 day-82 years), and different health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). Experimental results show successful white matter parcellation across subjects from different populations acquired on multiple scanners, irrespective of age, gender or disease indications. Over 99% of the fiber tracts annotated in the atlas were detected in all subjects on average. One advantage in terms of robustness is that the tract-based pipeline does not require any cortical or subcortical segmentations, which can have limited success in young children and patients with brain tumors or other structural lesions. We believe this is the first demonstration of consistent automated white matter tract parcellation across the full lifespan from birth to advanced age.
Jens Sjölund, Anders Eklund, Evren Özarslan, Magnus Herberthson, Maria Bånkestad, and Hans Knutsson. 2018. “Bayesian Uncertainty Quantification in Linear Models for Diffusion MRI.” Neuroimage, 175, Pp. 272-85.Abstract
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.
Valerie J Sydnor, Ana María Rivas-Grajales, Amanda E Lyall, Fan Zhang, Sylvain Bouix, Sarina Karmacharya, Martha E Shenton, Carl-Fredrik Westin, Nikos Makris, Demian Wassermann, Lauren J O'Donnell, and Marek Kubicki. 2018. “A Comparison of Three Fiber Tract Delineation Methods and their Impact on White Matter Analysis.” Neuroimage, 178, Pp. 318-31.Abstract
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Shun Gong, Fan Zhang, Isaiah Norton, Walid I Essayed, Prashin Unadkat, Laura Rigolo, Ofer Pasternak, Yogesh Rathi, Lijun Hou, Alexandra J Golby, and Lauren J O'Donnell. 2018. “Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography: Application to Tracking the Arcuate Fasciculus for Neurosurgical Planning.” PLoS One, 13, 5, Pp. e0197056.Abstract
PURPOSE: Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. MATERIALS AND METHODS: We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. RESULTS: The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. CONCLUSION: Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.
Yi Hong, Lauren J O'Donnell, Peter Savadjiev, Fan Zhang, Demian Wassermann, Ofer Pasternak, Hans Johnson, Jane Paulsen, Jean-Paul Vonsattel, Nikos Makris, Carl F Westin, and Yogesh Rathi. 2018. “Genetic Load Determines Atrophy in Hand Cortico-striatal Pathways in Presymptomatic Huntington's Disease.” Hum Brain Mapp, 39, 10, Pp. 3871-83.Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that causes progressive breakdown of striatal neurons. Standard white matter integrity measures like fractional anisotropy and mean diffusivity derived from diffusion tensor imaging were analyzed in prodromal-HD subjects; however, they studied either a whole brain or specific subcortical white matter structures with connections to cortical motor areas. In this work, we propose a novel analysis of a longitudinal cohort of 243 prodromal-HD individuals and 88 healthy controls who underwent two or more diffusion MRI scans as part of the PREDICT-HD study. We separately trace specific white matter fiber tracts connecting the striatum (caudate and putamen) with four cortical regions corresponding to the hand, face, trunk, and leg motor areas. A multi-tensor tractography algorithm with an isotropic volume fraction compartment allows estimating diffusion of fast-moving extra-cellular water in regions containing crossing fibers and provides quantification of a microstructural property related to tissue atrophy. The tissue atrophy rate is separately analyzed in eight cortico-striatal pathways as a function of CAG-repeats (genetic load) by statistically regressing out age effect from our cohort. The results demonstrate a statistically significant increase in isotropic volume fraction (atrophy) bilaterally in hand fiber connections to the putamen with increasing CAG-repeats, which connects the genetic abnormality (CAG-repeats) to an imaging-based microstructural marker of tissue integrity in specific white matter pathways in HD. Isotropic volume fraction measures in eight cortico-striatal pathways are also correlated significantly with total motor scores and diagnostic confidence levels, providing evidence of their relevance to HD clinical presentation.
Angela Albi, Antonio Meola, Fan Zhang, Pegah Kahali, Laura Rigolo, Chantal MW Tax, Pelin Aksit Ciris, Walid I Essayed, Prashin Unadkat, Isaiah Norton, Yogesh Rathi, Olutayo Olubiyi, Alexandra J Golby, and Lauren J O'Donnell. 2018. “Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects.” J Neuroimaging, 28, 2, Pp. 173-82.Abstract
BACKGROUND AND PURPOSE: Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. METHODS: Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. RESULTS: Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. CONCLUSIONS: Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings.
Sankha S Basu, Elizabeth C Randall, Michael S Regan, Begoña GC Lopez, Amanda R Clark, Nicholas D Schmitt, Jeffrey N Agar, Deborah A Dillon, and Nathalie YR Agar. 2018. “In Vitro Liquid Extraction Surface Analysis Mass Spectrometry (ivLESA-MS) for Direct Metabolic Analysis of Adherent Cells in Culture.” Anal Chem, 90, 8, Pp. 4987-91.Abstract
Conventional metabolomic methods include extensive sample preparation steps and long analytical run times, increasing the likelihood of processing artifacts and limiting high throughput applications. We present here in vitro liquid extraction surface analysis mass spectrometry (ivLESA-MS), a variation on LESA-MS, performed directly on adherent cells grown in 96-well cell culture plates. To accomplish this, culture medium was aspirated immediately prior to analysis, and metabolites were extracted using LESA from the cell monolayer surface, followed by nano-electrospray ionization and MS analysis in negative ion mode. We applied this platform to characterize and compare lipidomic profiles of multiple breast cancer cell lines growing in culture (MCF-7, ZR-75-1, MDA-MB-453, and MDA-MB-231) and revealed distinct and reproducible lipidomic signatures between the cell lines. Additionally, we demonstrated time-dependent processing artifacts, underscoring the importance of immediate analysis. ivLESA-MS represents a rapid in vitro metabolomic method, which precludes the need for quenching, cell harvesting, sample preparation, and chromatography, significantly shortening preparation and analysis time while minimizing processing artifacts. This method could be further adapted to test drugs in vitro in a high throughput manner.
Elizabeth C Randall, Kristina B Emdal, Janice K Laramy, Minjee Kim, Alison Roos, David Calligaris, Michael S Regan, Shiv K Gupta, Ann C Mladek, Brett L Carlson, Aaron J Johnson, Fa-Ke Lu, Sunney X Xie, Brian A Joughin, Raven J Reddy, Sen Peng, Walid M Abdelmoula, Pamela R Jackson, Aarti Kolluri, Katherine A. Kellersberger, Jeffrey N Agar, Douglas A Lauffenburger, Kristin R Swanson, Nhan L Tran, William F Elmquist, Forest M White, Jann N Sarkaria, and Nathalie YR Agar. 2018. “Integrated Mapping of Pharmacokinetics and Pharmacodynamics in a Patient-derived Xenograft Model of Glioblastoma.” Nat Commun, 9, 1, Pp. 4904.Abstract
Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.
Ye Wu, Fan Zhang, Nikos Makris, Yuping Ning, Isaiah Norton, Shenglin She, Hongjun Peng, Yogesh Rathi, Yuanjing Feng, Huawang Wu, and Lauren J O'Donnell. 2018. “Investigation into Local White Matter Abnormality in Emotional Processing and Sensorimotor Areas using an Automatically Annotated Fiber Clustering in Major Depressive Disorder.” Neuroimage, 181, Pp. 16-29.Abstract
This work presents an automatically annotated fiber cluster (AAFC) method to enable identification of anatomically meaningful white matter structures from the whole brain tractography. The proposed method consists of 1) a study-specific whole brain white matter parcellation using a well-established data-driven groupwise fiber clustering pipeline to segment tractography into multiple fiber clusters, and 2) a novel cluster annotation method to automatically assign an anatomical tract annotation to each fiber cluster by employing cortical parcellation information across multiple subjects. The novelty of the AAFC method is that it leverages group-wise information about the fiber clusters, including their fiber geometry and cortical terminations, to compute a tract anatomical label for each cluster in an automated fashion. We demonstrate the proposed AAFC method in an application of investigating white matter abnormality in emotional processing and sensorimotor areas in major depressive disorder (MDD). Seven tracts of interest related to emotional processing and sensorimotor functions are automatically identified using the proposed AAFC method as well as a comparable method that uses a cortical parcellation alone. Experimental results indicate that our proposed method is more consistent in identifying the tracts across subjects and across hemispheres in terms of the number of fibers. In addition, we perform a between-group statistical analysis in 31 MDD patients and 62 healthy subjects on the identified tracts using our AAFC method. We find statistical differences in diffusion measures in local regions within a fiber tract (e.g. 4 fiber clusters within the identified left hemisphere cingulum bundle (consisting of 14 clusters) are significantly different between the two groups), suggesting the ability of our method in identifying potential abnormality specific to subdivisions of a white matter structure.

Pages