Neurosurgery Research Publications

2016
Valdés PA, Roberts DW, Lu F-K, Golby A. Optical Technologies for Intraoperative Neurosurgical Guidance. Neurosurg Focus. 2016;40 (3) :E8.Abstract

Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.

Fischer DB, Perez DL, Prasad S, Rigolo L, O'Donnell L, Acar D, Meadows M-E, Baslet G, Boes AD, Golby AJ, et al. Right Inferior Longitudinal Fasciculus Lesions Disrupt Visual-emotional Integration. Soc Cogn Affect Neurosci. 2016;11 (6) :945-51.Abstract

The mechanism by which the brain integrates visual and emotional information remains incompletely understood, and can be studied through focal lesions that selectively disrupt this process. To date, three reported cases of visual hypoemotionality, a vision-specific form of derealization, have resulted from lesions of the temporo-occipital junction. We present a fourth case of this rare phenomenon, and investigate the role of the inferior longitudinal fasciculus (ILF) in the underlying pathophysiology. A 50-year-old right-handed male was found to have a right medial temporal lobe tumor following new-onset seizures. Interstitial laser ablation of the lesion was complicated by a right temporo-parieto-occipital intraparenchymal hemorrhage. The patient subsequently experienced emotional estrangement from visual stimuli. A lesion overlap analysis was conducted to assess involvement of the ILF by this patient's lesion and those of the three previously described cases, and diffusion tensor imaging was acquired in our case to further investigate ILF disruption. All four lesions specifically overlapped with the expected trajectory of the right ILF, and diminished structural integrity of the right ILF was observed in our case. These findings implicate the ILF in visual hypoemotionality, suggesting that the ILF is critical for integrating visual information with its emotional content.

Incekara F, Olubiyi O, Ozdemir A, Lee T, Rigolo L, Golby A. The Value of Pre- and Intraoperative Adjuncts on the Extent of Resection of Hemispheric Low-Grade Gliomas: A Retrospective Analysis. J Neurol Surg A Cent Eur Neurosurg. 2016;77 (2) :79-87.Abstract

Background To achieve maximal resection with minimal risk of postoperative neurologic morbidity, different neurosurgical adjuncts are being used during low-grade glioma (LGG) surgery. Objectives To investigate the effect of pre- and intraoperative adjuncts on the extent of resection (EOR) of hemispheric LGGs. Methods Medical records were reviewed to identify patients of any sex, ≥ 18 years of age, who underwent LGG surgery at X Hospital between January 2005 and July 2013. Patients were divided into eight subgroups based on the use of various combinations of a neuronavigation system alone (NN), functional MRI-diffusion tensor imaging (fMRI-DTI) guided neuronavigation (FD), intraoperative MRI (MR), and direct electrical stimulation (DES). Initial and residual tumors were measured, and mean EOR was compared between groups. Results Of all 128 patients, gross total resection was achieved in 23.4%. Overall mean EOR was 81.3% ± 20.5%. Using DES in combination with fMRI-DTI (mean EOR: 86.7% ± 12.4%) on eloquent tumors improved mean EOR significantly after adjustment for potential confounders when compared with NN alone (mean EOR: 76.4% ± 25.5%; p = 0.001). Conclusions Using DES in combination with fMRI and DTI significantly improves EOR when LGGs are located in eloquent areas compared with craniotomies in which only NN was used.

Chen Z, Tie Y, Olubiyi O, Zhang F, Mehrtash A, Rigolo L, Kahali P, Norton I, Pasternak O, Rathi Y, et al. Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers using Two-tensor Unscented Kalman Filter Tractography. Int J Comput Assist Radiol Surg. 2016;11 (8) :1475-86.Abstract

PURPOSE: The aim of this study was to present a tractography algorithm using a two-tensor unscented Kalman filter (UKF) to improve the modeling of the corticospinal tract (CST) by tracking through regions of peritumoral edema and crossing fibers. METHODS: Ten patients with brain tumors in the vicinity of motor cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-T magnetic resonance imaging (MRI) including functional MRI (fMRI) and a diffusion-weighted data set with 31 directions. Fiber tracking was performed using both single-tensor streamline and two-tensor UKF tractography methods. A two-region-of-interest approach was used to delineate the CST. Results from the two tractography methods were compared visually and quantitatively. fMRI was applied to identify the functional fiber tracts. RESULTS: Single-tensor streamline tractography underestimated the extent of tracts running through the edematous areas and could only track the medial projections of the CST. In contrast, two-tensor UKF tractography tracked fanning projections of the CST despite peritumoral edema and crossing fibers. Based on visual inspection, the two-tensor UKF tractography delineated tracts that were closer to motor fMRI activations, and it was apparently more sensitive than single-tensor streamline tractography to define the tracts directed to the motor sites. The volume of the CST was significantly larger on two-tensor UKF than on single-tensor streamline tractography ([Formula: see text]). CONCLUSION: Two-tensor UKF tractography tracks a larger volume CST than single-tensor streamline tractography in the setting of peritumoral edema and crossing fibers in brain tumor patients.

Torcuator RG, Hulou MM, Chavakula V, Jolesz FA, Golby AJ. Intraoperative Real-time MRI-guided Stereotactic Biopsy Followed by Laser Thermal Ablation for Progressive Brain Metastases after Radiosurgery. J Clin Neurosci. 2016;24 :68-73.Abstract

Stereotactic radiosurgery is one of the treatment options for brain metastases. However, there are patients who will progress after radiosurgery. One of the potential treatments for this subset of patients is laser ablation. Image-guided stereotactic biopsy is important to determine the histopathological nature of the lesion. However, this is usually based on preoperative, static images, which may affect the target accuracy during the actual procedure as a result of brain shift. We therefore performed real-time intraoperative MRI-guided stereotactic aspiration and biopsies on two patients with symptomatic, progressive lesions after radiosurgery followed immediately by laser ablation. The patients tolerated the procedure well with no new neurologic deficits. Intraoperative MRI-guided stereotactic biopsy followed by laser ablation is safe and accurate, providing real-time updates and feedback during the procedure.

2015
Pujol S, Wells III WM, Pierpaoli C, Brun C, Gee J, Cheng G, Vemuri B, Commowick O, Prima S, Stamm A, et al. The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery. J Neuroimaging. 2015;25 (6) :875-82.Abstract

BACKGROUND AND PURPOSE: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. METHODS: Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. RESULTS: The evaluation of tractography reconstructions showed a great interalgorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. CONCLUSIONS: The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision making.

Olubiyi O, Ozdemir A, Incekara F, Tie Y, Dolati P, Hsu L, Santagata S, Chen Z, Rigolo L, Golby AJ. Intraoperative Magnetic Resonance Imaging in Intracranial Glioma Resection: A Single-Center, Retrospective Blinded Volumetric Study. World Neurosurg. 2015;84 (2) :528-36.Abstract

BACKGROUND: Intraoperative magnetic resonance imaging (IoMRI) was devised to overcome brain shifts during craniotomies. Yet, the acceptance of IoMRI is limited. OBJECTIVE: To evaluate impact of IoMRI on intracranial glioma resection outcome including overall patient survival. METHODS: A retrospective review of records was performed on a cohort of 164 consecutive patients who underwent resection surgery for newly diagnosed intracranial gliomas either with or without IoMRI technology performed by 2 neurosurgeons in our center. Patient follow-up was at least 5 years. Extent of resection (EOR) was calculated using pre- and postoperative contrast-enhanced and T2-weighted MR-images. Adjusted analysis was performed to compare gross total resection (GTR), EOR, permanent surgery-associated neurologic deficit, and overall survival between the 2 groups. RESULTS: Overall median EOR was 92.1%, and 97.45% with IoMRI use and 89.9% without IoMRI, with crude (unadjusted) P < 0.005. GTR was achieved in 49.3% of IoMRI cases, versus in only 21.4% of no-IoMRI cases, P < 0.001. GTR achieved was more with the use of IoMRI among gliomas located in both eloquent and noneloquent brain areas, P = 0.017 and <0.001, respectively. Permanent surgery-associated neurologic deficit was not (statistically) more significant with no-IoMRI, P = 0.284 (13.8% vs. 6.7%). In addition, the IoMRI group had better 5-year overall survival, P < 0.001. CONCLUSION: This study shows that the use of IoMRI was associated with greater rates of EOR and GTR, and better overall 5-year survival in both eloquent brain areas located and non-eloquent brain areas located gliomas, with no increased risk of neurologic complication.

2014
Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, Liu X, Wiley JS, Vestal ML, Ramkissoon SH, et al. Intraoperative Mass Spectrometry Mapping of an Onco-metabolite to Guide Brain Tumor Surgery. Proc Natl Acad Sci U S A. 2014;111 (30) :11121-6.Abstract

For many intraoperative decisions surgeons depend on frozen section pathology, a technique developed over 150 y ago. Technical innovations that permit rapid molecular characterization of tissue samples at the time of surgery are needed. Here, using desorption electrospray ionization (DESI) MS, we rapidly detect the tumor metabolite 2-hydroxyglutarate (2-HG) from tissue sections of surgically resected gliomas, under ambient conditions and without complex or time-consuming preparation. With DESI MS, we identify isocitrate dehydrogenase 1-mutant tumors with both high sensitivity and specificity within minutes, immediately providing critical diagnostic, prognostic, and predictive information. Imaging tissue sections with DESI MS shows that the 2-HG signal overlaps with areas of tumor and that 2-HG levels correlate with tumor content, thereby indicating tumor margins. Mapping the 2-HG signal onto 3D MRI reconstructions of tumors allows the integration of molecular and radiologic information for enhanced clinical decision making. We also validate the methodology and its deployment in the operating room: We have installed a mass spectrometer in our Advanced Multimodality Image Guided Operating (AMIGO) suite and demonstrate the molecular analysis of surgical tissue during brain surgery. This work indicates that metabolite-imaging MS could transform many aspects of surgical care.

Pages