Accelerated Segmented Diffusion-Weighted Prostate Imaging for Higher Resolution, Higher Geometric Fidelity, and Multi-b Perfusion Estimation

Citation:

Ciris PA, Chiou J-yuan G, Glazer DI, Chao T-C, Tempany-Afdhal CM, Madore B, Maier SE. Accelerated Segmented Diffusion-Weighted Prostate Imaging for Higher Resolution, Higher Geometric Fidelity, and Multi-b Perfusion Estimation. Invest Radiol. 2019;54 (4) :238-46. Copy at http://www.tinyurl.com/yd5toj7x

Date Published:

2018 Dec 19

Abstract:

PURPOSE: The aim of this study was to improve the geometric fidelity and spatial resolution of multi-b diffusion-weighted magnetic resonance imaging of the prostate. MATERIALS AND METHODS: An accelerated segmented diffusion imaging sequence was developed and evaluated in 25 patients undergoing multiparametric magnetic resonance imaging examinations of the prostate. A reduced field of view was acquired using an endorectal coil. The number of sampled diffusion weightings, or b-factors, was increased to allow estimation of tissue perfusion based on the intravoxel incoherent motion (IVIM) model. Apparent diffusion coefficients measured with the proposed segmented method were compared with those obtained with conventional single-shot echo-planar imaging (EPI). RESULTS: Compared with single-shot EPI, the segmented method resulted in faster acquisition with 2-fold improvement in spatial resolution and a greater than 3-fold improvement in geometric fidelity. Apparent diffusion coefficient values measured with the novel sequence demonstrated excellent agreement with those obtained from the conventional scan (R = 0.91 for bmax = 500 s/mm and R = 0.89 for bmax = 1400 s/mm). The IVIM perfusion fraction was 4.0% ± 2.7% for normal peripheral zone, 6.6% ± 3.6% for normal transition zone, and 4.4% ± 2.9% for suspected tumor lesions. CONCLUSIONS: The proposed accelerated segmented prostate diffusion imaging sequence achieved improvements in both spatial resolution and geometric fidelity, along with concurrent quantification of IVIM perfusion.

Last updated on 05/13/2019