Fat-water selective excitation in balanced steady-state free precession using short spatial-spectral RF pulses.

Date Published:

2011 Feb

Abstract:

Fat suppression is important but challenging in balanced steady-state free precession (bSSFP) acquisitions, for a number of clinical applications. In the present work, the practicality of performing fat-water selective excitations using spatial-spectral (SPSP) RF pulses in bSSFP sequence is examined. With careful pulse design, the overall duration of these SPSP pulses was kept short to minimize detrimental effects on TR, scan time and banding artifact content. Fat-water selective excitation using SPSP pulses was demonstrated in both phantom and human bSSFP imaging at 3T, and compared to results obtained using a two-point Dixon method. The sequence with SPSP pulses performed better than the two-point Dixon method, in terms of scan time and suppression performance. Overall, it is concluded here that SPSP RF pulses do represent a viable option for fat-suppressed bSSFP imaging.