Two-dimensional ultrasound detection with unfocused frequency-randomized signals.


A method is described for detecting scattering in two-dimensions using an unfocused ultrasound field created from a continuously driven source array. The frequency of each element on the array is unique, resulting in a field that is highly variant as a function of both time and position. The scattered signal is then received by a single receiving line. The method, as currently written, is valid under the first order Born approximation. To demonstrate the approach, a series of simulations within the frequency range of 0.10-1.25 MHz are performed and compared with a simulated B-Scan in the same frequency range. The method is found to be superior in resolving closely spaced objects, discerning 1.4 mm separation in the radial and 0.5-mm separation in the axial direction. The method was also better able to determine object size, resolving scatters less than 10% of wavelength associated with the center frequency.