Publications by Year: 2010

Bonmassar G, Iwaki S, Goldmakher G, Angelone LM, Belliveau JW, Lev MH. On the Measurement of Electrical Impedance Spectroscopy (EIS) of the Human Head. Int J Bioelectromagn. 2010;12 (1) :32-46.Abstract
We are introducing a system for Electrical Impedance Spectroscopy (EIS) measurements for future use in Neurological Intensive Care Unit (NICU) settings. The system consists mostly of commercially available components and the software was developed in Labview (National Instruments). The system is based on the principle that acute hemorrhagic stroke may produce detectable changes in the impedance spectrum measured on the subject's scalp due to parenchimal local increases of blood volume. EIS measurements were performed on four healthy control subjects to establish a baseline for a real time stroke detector. Measurements were performed using white noise currents in the 0-50 kHz frequency band using ten shielded electrodes placed on a subject's scalp, with electrical potentials measured with a large-dynamic range for increased EIS accuracy. EIS measurements yielded highly symmetrical impedance spectra, which was only obtainable using the proposed continuos spectral electrical impedance estimation.
Suarez RO, Golby AJ, Whalen S, Sato S, Theodore WH, Kufta CV, Devinsky O, Balish M, Bromfield EB. Contributions to singing ability by the posterior portion of the superior temporal gyrus of the non-language-dominant hemisphere: first evidence from subdural cortical stimulation, Wada testing, and fMRI. Cortex. 2010;46 (3) :343-53.Abstract

INTRODUCTION: Although the substrates that mediate singing abilities in the human brain are not well understood, invasive brain mapping techniques used for clinical decision making such as intracranial electro-cortical testing and Wada testing offer a rare opportunity to examine music-related function in a select group of subjects, affording exceptional spatial and temporal specificity. METHODS: We studied eight patients with medically refractory epilepsy undergoing indwelling subdural electrode seizure focus localization. All patients underwent Wada testing for language lateralization. Functional assessment of language and music tasks was done by electrode grid cortical stimulation. One patient was also tested non-invasively with functional magnetic resonance imaging (fMRI). Functional organization of singing ability compared to language ability was determined based on four regions-of-interest (ROIs): left and right inferior frontal gyrus (IFG), and left and right posterior superior temporal gyrus (pSTG). RESULTS: In some subjects, electrical stimulation of dominant pSTG can interfere with speech and not singing, whereas stimulation of non-dominant pSTG area can interfere with singing and not speech. Stimulation of the dominant IFG tends to interfere with both musical and language expression, while non-dominant IFG stimulation was often observed to cause no interference with either task; and finally, that stimulation of areas adjacent to but not within non-dominant pSTG typically does not affect either ability. Functional fMRI mappings of one subject revealed similar music/language dissociation with respect to activation asymmetry within the ROIs. CONCLUSION: Despite inherent limitations with respect to strictly research objectives, invasive clinical techniques offer a rare opportunity to probe musical and language cognitive processes of the brain in a select group of patients.

Reinsberger C, Tanaka N, Cole AJ, Lee JW, Dworetzky BA, Bromfield EB, Hamiwka L, Bourgeois BF, Golby AJ, Madsen JR, et al. Current Dipole Orientation and Distribution of Epileptiform Activity Correlates with Cortical Thinning in Left Mesiotemporal Epilepsy. Neuroimage. 2010;52 (4) :1238-42.Abstract

To evaluate cortical architecture in mesial temporal lobe epilepsy (MTLE) with respect to electrophysiology, we analyze both magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 19 patients with left MTLE. We divide the patients into two groups: 9 patients (Group A) have vertically oriented antero-medial equivalent current dipoles (ECDs). 10 patients (Group B) have ECDs that are diversely oriented and widely distributed. Group analysis of MRI data shows widespread cortical thinning in Group B compared with Group A, in the left hemisphere involving the cingulate, supramarginal, occipitotemporal and parahippocampal gyri, precuneus and parietal lobule, and in the right hemisphere involving the fronto-medial, -central and -basal gyri and the precuneus. These results suggest that regardless of the presence of hippocampal sclerosis, in a subgroup of patients with MTLE a large cortical network is affected. This finding may, in part, explain the unfavorable outcome in some MTLE patients after epilepsy surgery.

Sundaram P, Wells III WM, Mulkern RV, Bubrick EJ, Bromfield EB, Münch M, Orbach DB. Fast human brain magnetic resonance responses associated with epileptiform spikes. Magn Reson Med. 2010;64 (6) :1728-38.Abstract

Neuronal currents produce local electromagnetic fields that can potentially modulate the phase of the magnetic resonance signal and thus provide a contrast mechanism tightly linked to neuronal activity. Previous work has demonstrated the feasibility of direct MRI of neuronal activity in phantoms and cell culture, but in vivo efforts have yielded inconclusive, conflicting results. The likelihood of detecting and validating such signals can be increased with (i) fast gradient-echo echo-planar imaging, with acquisition rates sufficient to resolve neuronal activity, (ii) subjects with epilepsy, who frequently experience stereotypical electromagnetic discharges between seizures, expressed as brief, localized, high-amplitude spikes (interictal discharges), and (iii) concurrent electroencephalography. This work demonstrates that both MR magnitude and phase show large-amplitude changes concurrent with electroencephalography spikes. We found a temporal derivative relationship between MR phase and scalp electroencephalography, suggesting that the MR phase changes may be tightly linked to local cerebral activity. We refer to this manner of MR acquisition, designed explicitly to track the electroencephalography, as encephalographic MRI (eMRI). Potential extension of this technique into a general purpose functional neuroimaging tool requires further study of the MR signal changes accompanying lower amplitude neuronal activity than those discussed here.

Ababneh R, Yuan J, Madore B. Fat-water Separation in Dynamic Objects using an UNFOLD-like Temporal Processing. J Magn Reson Imaging. 2010;32 (4) :962-70.Abstract

PURPOSE: To separate fat and water signals in dynamic imaging. Because important features may be embedded in fat, and because fat may take part in disease processes, separating fat and water signals may be of great importance in a number of clinical applications. This work aims to achieve such separation at nearly no loss in temporal resolution compared to usual, nonseparated acquisitions. In contrast, the well-known 3-point Dixon method may cause as much as a 3-fold reduction in temporal resolution. MATERIALS AND METHODS: The proposed approach involves modulating the echo time TE from frame to frame, to force fat signals to behave in a conspicuous manner through time, so they can be readily identified and separated from water signals. The strategy is inspired from the "unaliasing by Fourier encoding the overlaps in the temporal direction" (UNFOLD) method, although UNFOLD involves changes in the sampling function rather than TE, and aims at suppressing aliased material rather than fat. RESULTS: The method was implemented at 1.5 T and 3 T, on cardiac cine and multiframe steady-state free precession sequences. In addition to phantom results, in vivo results from volunteers are presented. CONCLUSION: Good separation of fat and water signals was achieved in all cases.

Kikinis Z, Fallon JH, Niznikiewicz M, Nestor P, Davidson C, Bobrow L, Pelavin PE, Fischl B, Yendiki A, McCarley RW, et al. Gray Matter Volume Reduction in Rostral Middle Frontal Gyrus in Patients with Chronic Schizophrenia. Schizophr Res. 2010;123 (2-3) :153-9.Abstract

The dorsolateral prefrontal cortex (DLPFC) is a brain region that has figured prominently in studies of schizophrenia and working memory, yet the exact neuroanatomical localization of this brain region remains to be defined. DLPFC primarily involves the superior frontal gyrus and middle frontal gyrus (MFG). The latter, however is not a single neuroanatomical entity but instead is comprised of rostral (anterior, middle, and posterior) and caudal regions. In this study we used structural MRI to develop a method for parcellating MFG into its component parts. We focused on this region of DLPFC because it includes BA46, a region involved in working memory. We evaluated volume differences in MFG in 20 patients with chronic schizophrenia and 20 healthy controls. Mid-rostral MFG (MR-MFG) was delineated within the rostral MFG using anterior and posterior neuroanatomical landmarks derived from cytoarchitectonic definitions of BA46. Gray matter volumes of MR-MFG were then compared between groups, and a significant reduction in gray matter volume was observed (p<0.008), but not in other areas of MFG (i.e., anterior or posterior rostral MFG, or caudal regions of MFG). Our results demonstrate that volumetric alterations in MFG gray matter are localized exclusively to MR-MFG. 3D reconstructions of the cortical surface made it possible to follow MFG into its anterior part, where other approaches have failed. This method of parcellation offers a more precise way of measuring MR-MFG that will likely be important in further documentation of DLPFC anomalies in schizophrenia.

Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-Resolution Magnetic Resonance Imaging Enhanced with Superparamagnetic Nanoparticles Measures Macrophage Burden in Atherosclerosis. Circulation. 2010;122 (17) :1707-15.Abstract

BACKGROUND: Macrophages contribute to the progression and acute complications of atherosclerosis. Macrophage imaging may serve as a biomarker to identify subclinical inflamed lesions, to predict future risk, and to aid in the assessment of novel therapies. METHODS AND RESULTS: To test the hypothesis that nanoparticle-enhanced, high-resolution magnetic resonance imaging (MRI) can measure plaque macrophage accumulation, we used 3-T MRI with a macrophage-targeted superparamagnetic nanoparticle preparation (monocrystalline iron oxide nanoparticles-47 [MION-47]) in cholesterol-fed New Zealand White rabbits 6 months after balloon injury. In vivo MRI visualized thickened abdominal aortas on both T1- and T2-weighted spin-echo images (T1 spin echo, 20 axial slices per animal; T2 spin echo, 28 slices per animal). Seventy-two hours after MION-47 injection, aortas exhibited lower T2 signal intensity compared with before contrast imaging (signal intensity ratio, aortic wall/muscle: before, 1.44 ± 0.26 versus after, 0.95 ± 0.22; 164 slices; P<0.01), whereas T1 spin echo images showed no significant change. MRI on ex vivo specimens provided similar results. Histological studies colocalized iron accumulation with immunoreactive macrophages in atheromata. The magnitude of signal intensity reduction on T2 spin echo in vivo images further correlated with macrophage areas in situ (150 slices; r=0.73). Treatment with rosuvastatin for 3 months yielded diminished macrophage content (P<0.05) and reversed T2 signal intensity changes (P<0.005). Signal changes in rosuvastatin-treated rabbits correlated with reduced macrophage burden (r=0.73). In vitro validation studies showed concentration-dependent MION-47 uptake by human primary macrophages. CONCLUSION: The magnitude of T2 signal intensity reduction in high-resolution MRI after administration of superparamagnetic phagocytosable nanoparticles can assess macrophage burden in atheromata, providing a clinically translatable tool to identify inflamed plaques and to monitor therapy-mediated changes in plaque inflammation.

Lee JW, Wen PY, Hurwitz S, Black PM, Kesari S, Drappatz J, Golby AJ, Wells III WM, Warfield SK, Kikinis R, et al. Morphological characteristics of brain tumors causing seizures. Arch Neurol. 2010;67 (3) :336-42.Abstract

OBJECTIVE: To quantify size and localization differences between tumors presenting with seizures vs nonseizure neurological symptoms. DESIGN: Retrospective imaging survey. We performed magnetic resonance imaging-based morphometric analysis and nonparametric mapping in patients with brain tumors. SETTING: University-affiliated teaching hospital. PATIENTS OR OTHER PARTICIPANTS: One hundred twenty-four patients with newly diagnosed supratentorial glial tumors. MAIN OUTCOME MEASURES: Volumetric and mapping methods were used to evaluate differences in size and location of the tumors in patients who presented with seizures as compared with patients who presented with other symptoms. RESULTS: In high-grade gliomas, tumors presenting with seizures were smaller than tumors presenting with other neurological symptoms, whereas in low-grade gliomas, tumors presenting with seizures were larger. Tumor location maps revealed that in high-grade gliomas, deep-seated tumors in the pericallosal regions were more likely to present with nonseizure neurological symptoms. In low-grade gliomas, tumors of the temporal lobe as well as the insular region were more likely to present with seizures. CONCLUSIONS: The influence of size and location of the tumors on their propensity to cause seizures varies with the grade of the tumor. In high-grade gliomas, rapidly growing tumors, particularly those situated in deeper structures, present with non-seizure-related symptoms. In low-grade gliomas, lesions in the temporal lobe or the insula grow large without other symptoms and eventually cause seizures. Quantitative image analysis allows for the mapping of regions in each group that are more or less susceptible to seizures.

Elhawary H, Oguro S, Tuncali K, Morrison PR, Tatli S, Shyn PB, Silverman SG, Hata N. Multimodality Non-rigid Image Registration for Planning, Targeting and Monitoring during CT-guided Percutaneous Liver Tumor Cryoablation. Acad Radiol. 2010;17 (11) :1334-44.Abstract

RATIONALE AND OBJECTIVES: The aim of this study was to develop non-rigid image registration between preprocedure contrast-enhanced magnetic resonance (MR) images and intraprocedure unenhanced computed tomographic (CT) images, to enhance tumor visualization and localization during CT imaging-guided liver tumor cryoablation procedures. MATERIALS AND METHODS: A non-rigid registration technique was evaluated with different preprocessing steps and algorithm parameters and compared to a standard rigid registration approach. The Dice similarity coefficient, target registration error, 95th-percentile Hausdorff distance, and total registration time (minutes) were compared using a two-sided Student's t test. The entire registration method was then applied during five CT imaging-guided liver cryoablation cases with the intraprocedural CT data transmitted directly from the CT scanner, with both accuracy and registration time evaluated. RESULTS: Selected optimal parameters for registration were a section thickness of 5 mm, cropping the field of view to 66% of its original size, manual segmentation of the liver, B-spline control grid of 5 × 5 × 5, and spatial sampling of 50,000 pixels. A mean 95th-percentile Hausdorff distance of 3.3 mm (a 2.5 times improvement compared to rigid registration, P < .05), a mean Dice similarity coefficient of 0.97 (a 13% increase), and a mean target registration error of 4.1 mm (a 2.7 times reduction) were measured. During the cryoablation procedure, registration between the preprocedure MR and the planning intraprocedure CT imaging took a mean time of 10.6 minutes, MR to targeting CT image took 4 minutes, and MR to monitoring CT imaging took 4.3 minutes. Mean registration accuracy was <3.4 mm. CONCLUSIONS: Non-rigid registration allowed improved visualization of the tumor during interventional planning, targeting, and evaluation of tumor coverage by the ice ball. Future work is focused on reducing segmentation time to make the method more clinically acceptable.

Arata J, Kozuka H, Kim HW, Takesue N, Vladimirov B, Sakaguchi M, Tokuda J, Hata N, Chinzei K, Fujimoto H. Open Core Control sSoftware for Surgical Robots. Int J Comput Assist Radiol Surg. 2010;5 (3) :211-20.Abstract

OBJECT: In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. MATERIALS AND METHODS: In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a "force guide" for supporting operators to perform precise manipulation by using a master-slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. RESULTS: The Open Core Control software was implemented on a surgical master-slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a "force guide" on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. CONCLUSION: In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement "General Principles of Software Validation" or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field.

Fernández-Esparrach G, San José Estépar R, Guarner-Argente C, Martínez-Pallí G, Navarro R, Rodríguez de Miguel C, Córdova H, Thompson CC, Lacy AM, Donoso L, et al. The role of a computed tomography-based image registered navigation system for natural orifice transluminal endoscopic surgery: a comparative study in a porcine model. Endoscopy. 2010;42 (12) :1096-103.Abstract

BACKGROUND AND STUDY AIMS: Most natural orifice transluminal endoscopic surgery (NOTES) procedures have been performed in animal models through the anterior stomach wall, but this approach does not provide efficient access to all anatomic areas of interest. Moreover, injury of the adjacent structures has been reported when using a blind access. The aim of the current study was to assess the utility of a CT-based (CT: computed tomography) image registered navigation system in identifying safe gastrointestinal access sites for NOTES and identifying intraperitoneal structures. METHODS: A total of 30 access procedures were performed in 30 pigs: anterior gastric wall (n = 10), posterior gastric wall (n = 10), and anterior rectal wall (n = 10). Of these, 15 procedures used image registered guidance (IR-NOTES) and 15 procedures used a blind access (NOTES only). Timed abdominal exploration was performed with identification of 11 organs. The location of the endoscopic tip was tracked using an electromagnetic tracking system and was recorded for each case. Necropsy was performed immediately after the procedure. The primary outcome was the rate of complications; secondary outcome variables were number of organs identified and kinematic measurements. RESULTS: A total of 30 animals weighting a mean (± SD) of 30.2 ± 6.8 kg were included in the study. The incision point was correctly placed in 11 out of 15 animals in each group (73.3 %). The mean peritoneoscopy time and the number of properly identified organs were equivalent in the two groups. There were eight minor complications (26.7 %), two (13.3 %) in the IR-NOTES group and six (40.0 %) in the NOTES only group ( P = n. s.). Characteristics of the endoscope tip path showed a statistically significant improvement in trajectory smoothness of motion for all organs in the IR-NOTES group. CONCLUSION: The image registered system appears to be feasible in NOTES procedures and results from this study suggest that image registered guidance might be useful for supporting navigation with an increased smoothness of motion.

Clement GT. Spatial Backward Planar Projection in Absorbing Media Possessing an Arbitrary Dispersion Relation. Acoust Sci Technol. 2010;31 (6) :379-386.Abstract

Planar projection methods have been shown to rapidly relate fields between two planes. Such an approach is particularly useful for characterizing transducers, since only a single plane needs to be measured in order to characterize an entire field. The present work considers the same approach in the presence of an arbitrary dispersion relation. Unlike traditional methods that use Fourier solutions of the time-domain wave equation, the approach starts from a frequency-domain Helmholtz equation for waves in a dispersive medium. It is shown that a transfer function similar to that derived from time domain equations can be utilized. Both the forward- and backward-projection behaviors are examined and it is demonstrated that the approach is invariant to propagation direction.

Risholm P, Pieper S, Samset E, Wells III WM. Summarizing and visualizing uncertainty in non-rigid registration. Med Image Comput Comput Assist Interv. 2010;13 (Pt 2) :554-61.Abstract

Registration uncertainty may be important information to convey to a surgeon when surgical decisions are taken based on registered image data. However, conventional non-rigid registration methods only provide the most likely deformation. In this paper we show how to determine the registration uncertainty, as well as the most likely deformation, by using an elastic Bayesian registration framework that generates a dense posterior distribution on deformations. We model both the likelihood and the elastic prior on deformations with Boltzmann distributions and characterize the posterior with a Markov Chain Monte Carlo algorithm. We introduce methods that summarize the high-dimensional uncertainty information and show how these summaries can be visualized in a meaningful way. Based on a clinical neurosurgical dataset, we demonstrate the importance that uncertainty information could have on neurosurgical decision making.

Afnan J, Tempany CM. Update on prostate imaging. Urol Clin North Am. 2010;37 (1) :23-5.Abstract

Successful and accurate imaging of prostate cancer is integral to its clinical management from detection and staging to subsequent monitoring. Various modalities are used including ultrasound, computed tomography, and magnetic resonance imaging, with the greatest advances seen in the field of magnetic resonance.