Publications

2015
Stan T Gregory, John Oshinski, Ehud J Schmidt, Raymond Y Kwong, William G Stevenson, and Zion Tsz Ho Tse. 2015. “Continuous Rapid Quantification of Stroke Volume Using Magnetohydrodynamic Voltages in 3T Magnetic Resonance Imaging.” Circ Cardiovasc Imaging, 8, 12.Abstract
BACKGROUND: To develop a technique to noninvasively estimate stroke volume in real time during magnetic resonance imaging (MRI)-guided procedures, based on induced magnetohydrodynamic voltages (VMHD) that occur in ECG recordings during MRI exams, leaving the MRI scanner free to perform other imaging tasks. Because of the relationship between blood flow (BF) and VMHD, we hypothesized that a method to obtain stroke volume could be derived from extracted VMHD vectors in the vectorcardiogram (VCG) frame of reference (VMHDVCG). METHODS AND RESULTS: To estimate a subject-specific BF-VMHD model, VMHDVCG was acquired during a 20-s breath-hold and calibrated versus aortic BF measured using phase-contrast magnetic resonance in 10 subjects (n=10) and 1 subject diagnosed with premature ventricular contractions. Beat-to-beat validation of VMHDVCG-derived BF was performed using real-time phase-contrast imaging in 7 healthy subjects (n=7) during 15-minute cardiac exercise stress tests and 30 minutes after stress relaxation in 3T MRIs. Subject-specific equations were derived to correlate VMHDVCG with BF at rest and validated using real-time phase-contrast. An average error of 7.22% and 3.69% in stroke volume estimation, respectively, was found during peak stress and after complete relaxation. Measured beat-to-beat BF time history derived from real-time phase-contrast and VMHD was highly correlated using a Spearman rank correlation coefficient during stress tests (0.89) and after stress relaxation (0.86). CONCLUSIONS: Accurate beat-to-beat stroke volume and BF were estimated using VMHDVCG extracted from intra-MRI 12-lead ECGs, providing a means to enhance patient monitoring during MR imaging and MR-guided interventions.
Lauren J O'Donnell and Ofer Pasternak. 2015. “Does Diffusion MRI Tell Us Anything about the White Matter? An Overview of Methods and Pitfalls.” Schizophr Res, 161, 1, Pp. 133-41.Abstract

One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering "Does dMRI tell us anything about the white matter?" We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail.

Sonia Pujol, William M Wells III, Carlo Pierpaoli, Caroline Brun, James Gee, Guang Cheng, Baba Vemuri, Olivier Commowick, Sylvain Prima, Aymeric Stamm, Maged Goubran, Ali Khan, Terry Peters, Peter Neher, Klaus H Maier-Hein, Yundi Shi, Antonio Tristan-Vega, Gopalkrishna Veni, Ross Whitaker, Martin Styner, Carl-Fredrik Westin, Sylvain Gouttard, Isaiah Norton, Laurent Chauvin, Hatsuho Mamata, Guido Gerig, Arya Nabavi, Alexandra Golby, and Ron Kikinis. 2015. “The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery.” J Neuroimaging, 25, 6, Pp. 875-82.Abstract

BACKGROUND AND PURPOSE: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. METHODS: Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. RESULTS: The evaluation of tractography reconstructions showed a great interalgorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. CONCLUSIONS: The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision making.

Muna Aryal, Juyoung Park, Natalia Vykhodtseva, Yong-Zhi Zhang, and Nathan McDannold. 2015. “Enhancement in Blood-Tumor Barrier Permeability and Delivery of Liposomal Doxorubicin using Focused Ultrasound and Microbubbles: Evaluation during Tumor Progression in a Rat Glioma Model.” Phys Med Biol, 60, 6, Pp. 2511-27.Abstract

Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the 'blood tumor barrier' (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg(-1). This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g(-1)) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P < 0.05, P < 0.01, and P < 0.0001 at days 9, 14, and 17, respectively) and were greater than the control tumors by a factor of two or more (2222  ±  784, 3687  ±  796 and 5658  ±  821 ng g(-1)) regardless of the stage of tumor growth. The transfer coefficient Ktrans was significantly (P < 0.05) enhanced compared to control tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery are relatively consistent over time, at least in this tumor model. These results are encouraging for the use of large drug carriers, as they suggest that even large/late-stage tumors can benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter: ≃2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.

Wei Wang, Akila N Viswanathan, Antonio L Damato, Yue Chen, Zion Tse, Li Pan, Junichi Tokuda, Ravi T Seethamraju, Charles L Dumoulin, Ehud J Schmidt, and Robert A Cormack. 2015. “Evaluation of an Active Magnetic Resonance Tracking System for Interstitial Brachytherapy.” Med Phys, 42, 12, Pp. 7114.Abstract

PURPOSE: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. METHODS: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter's trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter's imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. RESULTS: The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet's orientation deviated from the main magnetic field direction. Fifteen catheters' trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. CONCLUSIONS: The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage.

Ofer Pasternak, Carl-Fredrik Westin, Brian Dahlben, Sylvain Bouix, and Marek Kubicki. 2015. “The Extent of Diffusion MRI Markers of Neuroinflammation and White Matter Deterioration in Chronic Schizophrenia.” Schizophr Res, 161, 1, Pp. 113-8.Abstract

In a previous study we have demonstrated, using a novel diffusion MRI analysis called free-water imaging, that the early stages of schizophrenia are more likely associated with a neuroinflammatory response and less so with a white matter deterioration or a demyelination process. What is not known is how neuroinflammation and white matter deterioration change along the progression of the disorder. In this study we apply the free-water measures on a population of 29 chronic schizophrenia subjects and compare them with 25 matching controls. Our aim was to compare the extent of free-water imaging abnormalities in chronic subjects with the ones previously obtained for subjects at their first psychotic episode. We find that chronic subjects showed a limited extent of abnormal increase in the volume of the extracellular space, suggesting a less extensive neuroinflammatory response relative to patients at the onset of schizophrenia. At the same time, the chronic schizophrenia subjects had greater extent of reduced fractional anisotropy compared to the previous study, suggesting increased white matter deterioration along the progression of the disease. Our findings substantiate the role of neuroinflammation in the earlier stages of the disorder, and the effect of neurodegeneration that is worsening in the chronic phase.

Muhammad M Abd-El-Barr, Seth M Santos, Linda S Aglio, Geoffrey S Young, Srinivasan Mukundan, Alexandra J Golby, William B Gormley, and Ian F Dunn. 2015. “"Extraoperative" MRI (eoMRI) for Brain Tumor Surgery: Initial Results at a Single Institution.” World Neurosurg, 83, 6, Pp. 921-8.Abstract
BACKGROUND: There is accumulating evidence that extent of resection (EOR) in intrinsic brain tumor surgery prolongs overall survival (OS) and progression-free survival (PFS). One of the strategies to increase EOR is the use of intraoperative MRI (ioMRI); however, considerable infrastructure investment is needed to establish and maintain a sophisticated ioMRI. We report the preliminary results of an extraoperative (eoMRI) protocol, with a focus on safety, feasibility, and EOR in intrinsic brain tumor surgery. METHODS: Ten patients underwent an eoMRI protocol consisting of surgical resection in a conventional operating room followed by an immediate MRI in a clinical MRI scanner while the patient was still under anesthesia. If findings of the MRI suggested residual safely resectable tumor, the patient was returned to the operating room. A retrospective volumetric analysis was undertaken to investigate the percentage of tumor resected after first resection and if applicable, after further resection. RESULTS: Six of 10 (60%) patients were thought to require no further resection after eoMRI. The EOR in these patients was 97.8% ± 1.8%. In the 4 patients who underwent further resection, the EOR during the original surgery was 88.5% ± 9.5% (P = 0.04). There was an average of 10.1% more tumor removed between the first and second surgery. In 3 of 4 (75%) of patients who returned for further resection, gross total resection of tumor was achieved. CONCLUSION: An eoMRI protocol appears to be a safe and practical method to ensure maximum safe resections in patients with brain tumors and can be performed readily in all centers with MRI capabilities.
Matthew Toews, Christian Wachinger, Raul San Jose Estepar, and William M Wells III. 2015. “A Feature-Based Approach to Big Data Analysis of Medical Images.” Inf Process Med Imaging, 24, Pp. 339-50.Abstract

This paper proposes an inference method well-suited to large sets of medical images. The method is based upon a framework where distinctive 3D scale-invariant features are indexed efficiently to identify approximate nearest-neighbor (NN) feature matches-in O (log N) computational complexity in the number of images N. It thus scales well to large data sets, in contrast to methods based on pair-wise image registration or feature matching requiring O(N) complexity. Our theoretical contribution is a density estimator based on a generative model that generalizes kernel density estimation and K-nearest neighbor (KNN) methods.. The estimator can be used for on-the-fly queries, without requiring explicit parametric models or an off-line training phase. The method is validated on a large multi-site data set of 95,000,000 features extracted from 19,000 lung CT scans. Subject-level classification identifies all images of the same subjects across the entire data set despite deformation due to breathing state, including unintentional duplicate scans. State-of-the-art performance is achieved in predicting chronic pulmonary obstructive disorder (COPD) severity across the 5-category GOLD clinical rating, with an accuracy of 89% if both exact and one-off predictions are considered correct.

Junichi Tokuda, William Plishker, Meysam Torabi, Olutayo I Olubiyi, George Zaki, Servet Tatli, Stuart G Silverman, Raj Shekher, and Nobuhiko Hata. 2015. “Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.” Acad Radiol, 22, 6, Pp. 722-33.Abstract
RATIONALE AND OBJECTIVES: Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. MATERIALS AND METHODS: Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. RESULTS: Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). CONCLUSIONS: The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice.
Frank Preiswerk, Matthew Toews, W. Scott Hoge, Jr-yuan George Chiou, Lawrence P. Panych, William M Wells, and Bruno Madore. 2015. “Hybrid Utrasound and MRI Acquisitions for High-Speed Imaging of Respiratory Organ Motion.” Med Image Comput Comput Assist Interv, 9349, Pp. 315-22.Abstract

Magnetic Resonance (MR) imaging provides excellent image quality at a high cost and low frame rate. Ultrasound (US) provides poor image quality at a low cost and high frame rate. We propose an instance-based learning system to obtain the best of both worlds: high quality MR images at high frame rates from a low cost single-element US sensor. Concurrent US and MRI pairs are acquired during a relatively brief offine learning phase involving the US transducer and MR scanner. High frame rate, high quality MR imaging of respiratory organ motion is then predicted from US measurements, even after stopping MRI acquisition, using a probabilistic kernel regression framework. Experimental results show predicted MR images to be highly representative of actual MR images.

Ritu R Gill, Yifan Zheng, Julianne S Barlow, Jagadeesan Jayender, Erin E Girard, Philip M Hartigan, Lucian R Chirieac, Carol J Belle-King, Kristen Murray, Christopher Sears, Jon O Wee, Michael T Jaklitsch, Yolonda L Colson, and Raphael Bueno. 2015. “Image-guided Video Assisted Thoracoscopic Surgery (iVATS) - Phase I-II Clinical Trial.” J Surg Oncol, 112, 1, Pp. 18-25.Abstract

PURPOSE: To facilitate localization and resection of small lung nodules, we developed a prospective clinical trial (ClinicalTrials.gov number NCT01847209) for a novel surgical approach which combines placement of fiducials using intra-operative C-arm computed tomography (CT) guidance with standard thoracoscopic resection technique using image-guided video-assisted thoracoscopic surgery (iVATS). METHODS: Pretrial training was performed in a porcine model using C-arm CT and needle guidance software. Methodology and workflow for iVATS was developed, and a multi-modality team was trained. A prospective phase I-II clinical trial was initiated with the goal of recruiting eligible patients with small peripheral pulmonary nodules. Intra-operative C-arm CT scan was utilized for guidance of percutaneous marking with two T-bars (Kimberly-Clark, Roswell, GA) followed by VATS resection of the tumor. RESULTS: Twenty-five patients were enrolled; 23 underwent iVATS, one withdrew, and one lesion resolved. Size of lesions were: 0.6-1.8 cm, mean = 1.3 ± 0.38 cm.. All 23 patients underwent complete resection of their lesions. CT imaging of the resected specimens confirmed the removal of the T-bars and the nodule. Average and total procedure radiation dose was in the acceptable low range (median = 1501 μGy*m(2), range 665-16,326). There were no deaths, and all patients were discharged from the hospital (median length of stay = 4 days, range 2-12). Three patients had postoperative complications: one prolonged air-leak, one pneumonia, and one ileus. CONCLUSIONS: A successful and safe step-wise process has been established for iVATS, combining intra-operative C-arm CT scanning and thoracoscopic surgery in a hybrid operating room.

Jinbang Guo, Howard J Huang, Xingan Wang, Wei Wang, Henry Ellison, Robert P Thomen, Andrew E Gelman, and Jason C Woods. 2015. “Imaging Mouse Lung Allograft Rejection with (1) H MRI.” Magn Reson Med, 73, 5, Pp. 1970-8.Abstract

PURPOSE: To demonstrate that longitudinal, noninvasive monitoring via MRI can characterize acute cellular rejection in mouse orthotopic lung allografts. METHODS: Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig versus anti-CD4/anti-CD8 treated groups. A two-dimensional multislice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at postoperative days 3, 7, and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. RESULTS: Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 posttransplantation (0.046→0.789; P < 0.05), despite large intermouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003; P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. CONCLUSION: Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment.

Patricia C Silveira, Ruth Dunne, Nisha I Sainani, Ronilda Lacson, Stuart G Silverman, Clare M Tempany, and Ramin Khorasani. 2015. “Impact of an Information Technology-Enabled Initiative on the Quality of Prostate Multiparametric MRI Reports.” Acad Radiol, 22, 7, Pp. 827-33.Abstract
RATIONALE AND OBJECTIVES: Assess the impact of implementing a structured report template and a computer-aided diagnosis (CAD) tool on the quality of prostate multiparametric magnetic resonance imaging (mp-MRI) reports. MATERIALS AND METHODS: Institutional Review Board approval was obtained for this Health Insurance Portability and Accountability Act-compliant study performed at an academic medical center. The study cohort included all prostate mp-MRI reports (n = 385) finalized 6 months before and after implementation of a structured report template and a CAD tool (collectively the information technology [IT] tools) integrated into the picture archiving and communication system workstation. Primary outcome measure was quality of prostate mp-MRI reports. An expert panel of our institution's subspecialty-trained abdominal radiologists defined prostate mp-MRI report quality as optimal, satisfactory, or unsatisfactory based on documentation of nine variables. Reports were reviewed to extract the predefined quality variables and determine whether the IT tools were used to create each report. Chi-square and Student's t tests were used to compare report quality before and after implementation of IT tools. RESULTS: The overall proportion of optimal or satisfactory reports increased from 29.8% (47/158) to 53.3% (121/227) (P < .001) after implementing the IT tools. Although the proportion of optimal or satisfactory reports increased among reports generated using at least one of the IT tools (47/158 = [29.8%] vs. 105/161 = [65.2%]; P < .001), there was no change in quality among reports generated without use of the IT tools (47/158 = [29.8%] vs. 16/66 = [24.2%]; P = .404). CONCLUSIONS: The use of a structured template and CAD tool improved the quality of prostate mp-MRI reports compared to free-text report format and subjective measurement of contrast enhancement kinetic curve.
Ming Li, Feng Gao, Jayender Jagadeesan, Ritu R Gill, Yanqing Hua, and Xiangpeng Zheng. 2015. “Incremental Value of Contrast Enhanced Computed Tomography on Diagnostic Accuracy in Evaluation of Small Pulmonary Ground Glass Nodules.” J Thorac Dis, 7, 9, Pp. 1606-15.Abstract

BACKGROUND: To evaluate the information gain by the application of both non-contrast and contrast enhanced computed tomography (CT) with extended mediastinal display window settings in the evaluation of pure ground glass nodules (pGGNs) and or mixed ground glass nodules (mGGNs) in the context of pre-invasive or early stage lung adenocarcinoma. METHODS: One hundred and fifty patients with ground glass nodules (GGNs) and mGGNs, with contrast enhanced CT scans within 2 weeks of thoracic surgery were included in the study. Quantitative evaluation of all nodules was performed in a conventional mediastinal window (CMW) and an extended mediastinal window (EMW) both on non-contrast images and contrast-enhanced images. RESULTS: Contrast-enhanced images with CMW demonstrated amplification of solid portion in 23 (43%), 41 (77%) with EMW out of 53 minimally invasive adenocarcinoma (MIA) nodules, and in 34 of 37 (91%) of invasive adenocarcinoma (IAC) nodules. Using the increase in size of solid portion of the nodule measured on the enhanced CT images with EMW, area under the receiver operating characteristic (ROC) curve of 0.872 and 0.899 was utilized for differentiating between the pre-invasive nodules and MIA and between MIA and IAC nodules, respectively. Statistically significant differences existed between the pre-invasive and the MIA groups, and MIA and the IAC groups in smaller nodules (P<0.01). CONCLUSIONS: Comparative quantitative analysis of the pre and post contrast images can help differentiate between atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), MIAs, and IACs. Extension of the CT mediastinal window setting improves the evaluation of small GGNs, and can augment the diagnostic accuracy when evaluating small pGGNs and mGGNs.

Olutayo Olubiyi, Aysegul Ozdemir, Fatih Incekara, Yanmei Tie, Parviz Dolati, Liangge Hsu, Sandro Santagata, Zhenrui Chen, Laura Rigolo, and Alexandra J Golby. 2015. “Intraoperative Magnetic Resonance Imaging in Intracranial Glioma Resection: A Single-Center, Retrospective Blinded Volumetric Study.” World Neurosurg, 84, 2, Pp. 528-36.Abstract

BACKGROUND: Intraoperative magnetic resonance imaging (IoMRI) was devised to overcome brain shifts during craniotomies. Yet, the acceptance of IoMRI is limited. OBJECTIVE: To evaluate impact of IoMRI on intracranial glioma resection outcome including overall patient survival. METHODS: A retrospective review of records was performed on a cohort of 164 consecutive patients who underwent resection surgery for newly diagnosed intracranial gliomas either with or without IoMRI technology performed by 2 neurosurgeons in our center. Patient follow-up was at least 5 years. Extent of resection (EOR) was calculated using pre- and postoperative contrast-enhanced and T2-weighted MR-images. Adjusted analysis was performed to compare gross total resection (GTR), EOR, permanent surgery-associated neurologic deficit, and overall survival between the 2 groups. RESULTS: Overall median EOR was 92.1%, and 97.45% with IoMRI use and 89.9% without IoMRI, with crude (unadjusted) P < 0.005. GTR was achieved in 49.3% of IoMRI cases, versus in only 21.4% of no-IoMRI cases, P < 0.001. GTR achieved was more with the use of IoMRI among gliomas located in both eloquent and noneloquent brain areas, P = 0.017 and <0.001, respectively. Permanent surgery-associated neurologic deficit was not (statistically) more significant with no-IoMRI, P = 0.284 (13.8% vs. 6.7%). In addition, the IoMRI group had better 5-year overall survival, P < 0.001. CONCLUSION: This study shows that the use of IoMRI was associated with greater rates of EOR and GTR, and better overall 5-year survival in both eloquent brain areas located and non-eloquent brain areas located gliomas, with no increased risk of neurologic complication.

C Wachinger, M Toews, G Langs, William M Wells III, and P Golland. 2015. “Keypoint Transfer Segmentation.” Inf Process Med Imaging, 24, Pp. 233-45.Abstract

We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm's robustness enables the segmentation of scans with highly variable field-of-view.

Amelie Meyer, Andras Lasso, Tamas Ungi, and Gabor Fichtinger. 2015. “Live Ultrasound Volume Reconstruction using Scout Scanning.” Proc SPIE Int Soc Opt Eng, 9415.Abstract

INTRODUCTION: Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. METHODS: Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. RESULTS: Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. DISCUSSION: Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

Mukund Balasubramanian, Robert V. Mulkern, William M Wells III, Padmavathi Sundaram, and Darren B Orbach. 2015. “Magnetic Resonance Imaging of Ionic Currents in Solution: The Effect of Magnetohydrodynamic Flow.” Magn Reson Med, 74, 4, Pp. 1145-55.Abstract

PURPOSE: Reliably detecting MRI signals in the brain that are more tightly coupled to neural activity than blood-oxygen-level-dependent fMRI signals could not only prove valuable for basic scientific research but could also enhance clinical applications such as epilepsy presurgical mapping. This endeavor will likely benefit from an improved understanding of the behavior of ionic currents, the mediators of neural activity, in the presence of the strong magnetic fields that are typical of modern-day MRI scanners. THEORY: Of the various mechanisms that have been proposed to explain the behavior of ionic volume currents in a magnetic field, only one-magnetohydrodynamic flow-predicts a slow evolution of signals, on the order of a minute for normal saline in a typical MRI scanner. METHODS: This prediction was tested by scanning a volume-current phantom containing normal saline with gradient-echo-planar imaging at 3 T. RESULTS: Greater signal changes were observed in the phase of the images than in the magnitude, with the changes evolving on the order of a minute. CONCLUSION: These results provide experimental support for the MHD flow hypothesis. Furthermore, MHD-driven cerebrospinal fluid flow could provide a novel fMRI contrast mechanism.

Eva C Gombos, Jayender Jagadeesan, Danielle M Richman, and Daniel F Kacher. 2015. “Magnetic Resonance Imaging-Guided Breast Interventions: Role in Biopsy Targeting and Lumpectomies.” Magn Reson Imaging Clin N Am, 23, 4, Pp. 547-61.Abstract
Contrast-enhanced breast MR imaging is increasingly being used to diagnose breast cancer and to perform biopsy procedures. The American Cancer Society has advised women at high risk for breast cancer to have breast MR imaging screening as an adjunct to screening mammography. This article places special emphasis on biopsy and operative planning involving MR imaging and reviews use of breast MR imaging in monitoring response to neoadjuvant chemotherapy. Described are peer-reviewed data on currently accepted MR imaging-guided procedures for addressing benign and malignant breast diseases, including intraoperative imaging.
Ehud J Schmidt. 2015. “Magnetic Resonance Imaging-Guided Cardiac Interventions.” Magn Reson Imaging Clin N Am, 23, 4, Pp. 563-77.Abstract
Performing intraoperative cardiovascular procedures inside an MR imaging scanner can potentially provide substantial advantage in clinical outcomes by reducing the risk and increasing the success rate relative to the way such procedures are performed today, in which the primary surgical guidance is provided by X-ray fluoroscopy, by electromagnetically tracked intraoperative devices, and by ultrasound. Both noninvasive and invasive cardiologists are becoming increasingly familiar with the capabilities of MR imaging for providing anatomic and physiologic information that is unequaled by other modalities. As a result, researchers began performing animal (preclinical) interventions in the cardiovascular system in the early 1990s.

Pages