Publications

2015
Vaibhav D Patil, Rajiv Gupta, Raúl San José Estépar, Ronilda Lacson, Arnold Cheung, Judith M Wong, John A Popp, Alexandra J Golby, Christopher Ogilvy, and Kirby G. Vosburgh. 2015. “Smart Stylet: The Development and Use of a Bedside External Ventricular Drain Image-Guidance System.” Stereotact Funct Neurosurg, 93, 1, Pp. 50-8.Abstract

BACKGROUND: Placement accuracy of ventriculostomy catheters is reported in a wide and variable range. Development of an efficient image-guidance system may improve physician performance and patient safety. OBJECTIVE: We evaluate the prototype of Smart Stylet, a new electromagnetic image-guidance system for use during bedside ventriculostomy. METHODS: Accuracy of the Smart Stylet system was assessed. System operators were evaluated for their ability to successfully target the ipsilateral frontal horn in a phantom model. RESULTS: Target registration error across 15 intracranial targets ranged from 1.3 to 4.6 mm (mean 3.1 mm). Using Smart Stylet guidance, a test operator successfully passed a ventriculostomy catheter to a shifted ipsilateral frontal horn 20/20 (100%) times from the frontal approach in a skull phantom. Without Smart Stylet guidance, the operator was successful 4/10 (40%) times from the right frontal approach and 6/10 (60%) times from the left frontal approach. In a separate experiment, resident operators were successful 2/4 (50%) times when targeting the shifted ipsilateral frontal horn with Smart Stylet guidance and 0/4 (0%) times without image guidance using a skull phantom. CONCLUSIONS: Smart Stylet may improve the ability to successfully target the ventricles during frontal ventriculostomy.

Takahisa Kato, Ichiro Okumura, Sang-Eun Song, Alexandra J Golby, and Nobuhiko Hata. 2015. “Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model.” IEEE ASME Trans Mechatron, 20, 5, Pp. 2252-63.Abstract

In this paper, we present a tendon-driven continuum robot for endoscopic surgery. The robot has two sections for articulation actuated by tendon wires. By actuating the two sections independently, the robot can generate a variety of tip positions while maintaining the tip direction. This feature offers more flexibility in positioning the tip for large viewing angles of up to 180 degrees than does a conventional endoscope. To accurately estimate the tip position at large viewing angles, we employed kinematic mapping with a tension propagation model including friction between the tendon wires and the robot body. In a simulation study using this kinematic-mapping, the two-section robot at a target scale (outer diameter 1.7 mm and length 60 mm) produced a variety of tip positions within 50-mm ranges at the 180°-angle view. In the experimental validation, a 10:1 scale prototype performed three salient postures with different tip positions at the 180°-angle view. The proposed forward kinematic mapping (FKM) predicted the tip position within a tip-to-tip error of 6 mm over the 208-mm articulating length. The tip-to-tip error by FKM was significantly less than the one by conventional piecewise-constant-curvature approximation (PCCA) (FKM: 5.9 ± 2.9 mm vs. PCCA: 23.7 ± 3.6 mm, n=15, P < 0.01).

Revanth Reddy Garlapati, Ahmed Mostayed, Grand Roman Joldes, Adam Wittek, Barry Doyle, and Karol Miller. 2015. “Towards Measuring Neuroimage Misalignment.” Comput Biol Med, 64, Pp. 12-23.Abstract

To enhance neuro-navigation, high quality pre-operative images must be registered onto intra-operative configuration of the brain. Therefore evaluation of the degree to which structures may remain misaligned after registration is critically important. We consider two Hausdorff Distance (HD)-based evaluation approaches: the edge-based HD (EBHD) metric and the Robust HD (RHD) metric as well as various commonly used intensity-based similarity metrics such as Mutual Information (MI), Normalised Mutual Information (NMI), Entropy Correlation Coefficient (ECC), Kullback-Leibler Distance (KLD) and Correlation Ratio (CR). We conducted the evaluation by applying known deformations to simple sample images and real cases of brain shift. We conclude that the intensity-based similarity metrics such as MI, NMI, ECC, KLD and CR do not correlate well with actual alignment errors, and hence are not useful for assessing misalignment. On the contrary, the EBHD and the RHD metrics correlated well with actual alignment errors; however, they have been found to underestimate the actual misalignment. We also note that it is beneficial to present HD results as a percentile-HD curve rather than a single number such as the 95-percentile HD. Percentile-HD curves present the full range of alignment errors and also facilitate the comparison of results obtained using different approaches. Furthermore, the qualities that should be possessed by an ideal evaluation metric were highlighted. Future studies could focus on developing such an evaluation metric.

Costas D Arvanitis, Gregory T Clement, and Nathan McDannold. 2015. “Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation.” IEEE Trans Med Imaging, 34, 6, Pp. 1270-81.Abstract
The interaction of ultrasonically-controlled microbubble oscillations with tissues and biological media has been shown to induce a wide range of bioeffects that may have significant impact on therapy and diagnosis of brain diseases and disorders. However, the inherently non-linear microbubble oscillations combined with the micrometer and microsecond scales involved in these interactions and the limited methods to assess and visualize them transcranially hinder both their optimal use and translation to the clinics. To overcome these challenges, we present a framework that combines numerical simulations with multimodality imaging to assess and visualize the microbubble oscillations transcranially. In the present work, microbubble oscillations were studied with an integrated US and MR imaging guided clinical FUS system. A high-resolution brain CT scan was also co-registered to the US and MR images and the derived acoustic properties were used as inputs to two- and three-dimensional Finite Difference Time Domain simulations that matched the experimental conditions and geometry. Synthetic point sources by either a Gaussian function or the output of a microbubble dynamics model were numerically excited and propagated through the skull towards a virtual US imaging array. Using passive acoustic mapping (PAM) that was refined to incorporate variable speed of sound, we were able to correct the aberrations introduced by the skull and substantially improve the PAM resolution. The good agreement between the simulations incorporating microbubble emissions and experimentally-determined PAMs suggest that this integrated approach can provide a clinically-relevant framework and more control over this nonlinear and dynamic process.
Tobias Penzkofer, Kemal Tuncali, Andriy Fedorov, Sang-Eun Song, Junichi Tokuda, Fiona M Fennessy, Mark G Vangel, Adam S Kibel, Robert V. Mulkern, William M Wells, Nobuhiko Hata, and Clare MC Tempany. 2015. “Transperineal In-Bore 3-T MR Imaging-guided Prostate Biopsy: A Prospective Clinical Observational Study.” Radiology, 274, 1, Pp. 170-80.Abstract

PURPOSE: To determine the detection rate, clinical relevance, Gleason grade, and location of prostate cancer ( PCa prostate cancer ) diagnosed with and the safety of an in-bore transperineal 3-T magnetic resonance (MR) imaging-guided prostate biopsy in a clinically heterogeneous patient population. MATERIALS AND METHODS: This prospective retrospectively analyzed study was HIPAA compliant and institutional review board approved, and informed consent was obtained. Eighty-seven men (mean age, 66.2 years ± 6.9) underwent multiparametric endorectal prostate MR imaging at 3 T and transperineal MR imaging-guided biopsy. Three subgroups of patients with at least one lesion suspicious for cancer were included: men with no prior PCa prostate cancer diagnosis, men with PCa prostate cancer who were undergoing active surveillance, and men with treated PCa prostate cancer and suspected recurrence. Exclusion criteria were prior prostatectomy and/or contraindication to 3-T MR imaging. The transperineal MR imaging-guided biopsy was performed in a 70-cm wide-bore 3-T device. Overall patient biopsy outcomes, cancer detection rates, Gleason grade, and location for each subgroup were evaluated and statistically compared by using χ(2) and one-way analysis of variance followed by Tukey honestly significant difference post hoc comparisons. RESULTS: Ninety biopsy procedures were performed with no serious adverse events, with a mean of 3.7 targets sampled per gland. Cancer was detected in 51 (56.7%) men: 48.1% (25 of 52) with no prior PCa prostate cancer , 61.5% (eight of 13) under active surveillance, and 72.0% (18 of 25) in whom recurrence was suspected. Gleason pattern 4 or higher was diagnosed in 78.1% (25 of 32) in the no prior PCa prostate cancer and active surveillance groups. Gleason scores were not assigned in the suspected recurrence group. MR targets located in the anterior prostate had the highest cancer yield (40 of 64, 62.5%) compared with those for the other parts of the prostate (P < .001). CONCLUSION: In-bore 3-T transperineal MR imaging-guided biopsy, with a mean of 3.7 targets per gland, allowed detection of many clinically relevant cancers, many of which were located anteriorly.

2014
Kari Tanderup, Akila N Viswanathan, Christian Kirisits, and Steven J Frank. 2014. “Magnetic Resonance Image Guided Brachytherapy.” Semin Radiat Oncol, 24, 3, Pp. 181-91.Abstract
The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.
Alexandra H Fairchild, Servet Tatli, Ruth M Dunne, Paul B Shyn, Kemal Tuncali, and Stuart G Silverman. 2014. “Percutaneous Cryoablation of Hepatic Tumors Adjacent to the Gallbladder: Assessment of Safety and Effectiveness.” J Vasc Interv Radiol, 25, 9, Pp. 1449-55.Abstract
PURPOSE: To assess safety and effectiveness of percutaneous image-guided cryoablation of hepatic tumors adjacent to the gallbladder. MATERIALS AND METHODS: Twenty-one cryoablation procedures were performed to treat 19 hepatic tumors (mean size, 2.7 cm; range, 1.0-5.0 cm) adjacent to the gallbladder in 17 patients (11 male; mean age, 59.2 y; range, 40-82 y) under computed tomography (n = 15) or magnetic resonance imaging (n = 6) guidance in a retrospective study. All tumors (mean size, 2.67 cm; range, 1.0-5.0 cm) were within 1 cm (mean, 0.4 cm) of the gallbladder; seven (33%) were contiguous with the gallbladder. Primary outcomes included complication rate and severity and postprocedure gallbladder imaging findings. Secondary outcomes included technical success and technique effectiveness at 6 months. RESULTS: Complications occurred in six of 21 procedures (29%); one (5%) was severe. Ice balls extended into the gallbladder lumen in 20 of 21 procedures (95%); no gallbladder-related complications occurred. The most common gallbladder imaging finding was mild, asymptomatic focal wall thickening after nine of 21 procedures (42%), which resolved on follow-up. Technical success was achieved in 19 of 21 sessions (90%). Six-month follow-up was available for 16 tumors; of these, all but two (87%) had no imaging evidence of local tumor progression. CONCLUSIONS: Percutaneous cryoablation of hepatic tumors adjacent to the gallbladder can be performed safely and successfully. Although postprocedural gallbladder changes are common, they are self-limited and clinically inconsequential, even when the ice ball extends into the gallbladder lumen.
Ruth M Dunne, Paul B Shyn, Jeffrey C Sung, Servet Tatli, Paul R Morrison, Paul J Catalano, and Stuart G Silverman. 2014. “Percutaneous Treatment of Hepatocellular Carcinoma in Patients with Cirrhosis: A Comparison of the Safety of Cryoablation and Radiofrequency Ablation.” Eur J Radiol, 83, 4, Pp. 632-8.Abstract
PURPOSE: To compare the safety of image-guided percutaneous cryoablation and radiofrequency ablation in the treatment of hepatocellular carcinoma in patients with cirrhosis. MATERIALS AND METHODS: This retrospective HIPAA-compliant study received institutional review board approval. Forty-two adult patients with cirrhosis underwent image-guided percutaneous ablation of hepatocellular carcinoma from 2003 to 2011. Twenty-five patients underwent 33 cryoablation procedures to treat 39 tumors, and 22 underwent 30 radiofrequency ablation procedures to treat 39 tumors. Five patients underwent both cryoablation and radiofrequency ablation procedures. Complication rates and severity per procedure were compared between the ablation groups. Potential confounding patient, procedure, and tumor-related variables were also compared. Statistical analyses included Kruskal-Wallis, Wilcoxon rank sum, and Fisher's exact tests. Two-sided P-values <0.05 were considered significant. RESULTS: The overall complication rates, 13 (39.4%) of 33 cryoablation procedures versus eight (26.7%) of 30 radiofrequency ablation procedures and severe/fatal complication rates, two (6.1%) of 33 cryoablation procedures versus one (3.3%) of 30 radiofrequency ablation procedures, were not significantly different between the ablation groups (both P=0.26). Severe complications included pneumothoraces requiring chest tube insertion during two cryoablation procedures. One death occurred within 90 days of a radiofrequency ablation procedure; all other complications were managed successfully. CONCLUSION: No significant difference was seen in the overall safety of image-guided percutaneous cryoablation and radiofrequency ablation in the treatment of hepatocellular carcinoma in patients with cirrhosis.
Thomas Kahn, Ferenc A Jolesz, and Jonathan S Lewin. 2014. “Proceedings of the 10th Interventional MRI Symposium.” 10th Interventional MRI Symposium 10, Pp. 1-85. 2014 iMRI Symposium Proceedings
Tina Kapur, Clare M. Tempany, and Ferenc A. Jolesz. 2014. “Proceedings of the 7th Image Guided Therapy Workshop.” Image Guided Therapy Workshop 7, Pp. 1-60. 2014 IGT Workshop Proceedings
Kemal Tuncali, X Liu, William M Wells III, Stu G Silverman, and Gary P. Zientara. 2014. “Real‐time Quantitative Monitoring of Percutaneous MRI‐guided Cryoablation of Renal Cancer.” In International Society for Magnetic Resonance in Medicine. Vol. 22.Abstract
The safety and effectiveness of percutaneous image‐guided ablations can be improved if the procedure could be assessed quantitatively and in real time. Using MRI’s ability to depict both the tumor and the iceball during cryoablations, we developed a novel computerized tool that utilizes fast automatic segmentation methods to compute ablation metrics and tested its accuracy in MRI guided cryoablations of renal cancer.
Ayaz Aghayev and Servet Tatli. 2014. “The use of Cryoablation in Treating Liver Tumors.” Expert Rev Med Devices, 11, 1, Pp. 41-52.Abstract
Percutaneous image-guided tumor ablation techniques have been used as an alternative method for patients with unresectable liver tumors. Although all techniques avoid morbidity and mortality of major surgery and have advantage of preserving non-tumoral liver parenchyma, cryoablation currently is the only percutaneous ablation technique allowing intraprocedural monitoring because of visibility of its ablation effect with computed tomography and MRI. Cryoablation uses extremely low temperatures to induce local tissue necrosis to treat both primary and metastatic liver tumors. This article discusses the principles of liver tumor percutaneous cryoablation, including mechanisms of tissue injury, technique, equipment, image-guidance used, patient selection criteria, clinical outcome and complications as well as current trends and future goals.
Zion Tsz Ho Tse, Charles L Dumoulin, Gari D Clifford, Jeff Schweitzer, Lei Qin, Julien Oster, Michael Jerosch-Herold, Raymond Y Kwong, Gregory Michaud, William G Stevenson, and Ehud J Schmidt. 2014. “A 1.5T MRI-conditional 12-lead Electrocardiogram for MRI and Intra-MR Intervention.” Magn Reson Med, 71, 3, Pp. 1336-47.Abstract

PURPOSE: High-fidelity 12-lead electrocardiogram (ECG) is important for physiological monitoring of patients during MR-guided intervention and cardiac MRI. Issues in obtaining noncorrupted ECGs inside MRI include a superimposed magneto-hydro-dynamic voltage, gradient switching-induced voltages, and radiofrequency heating. These problems increase with magnetic field. The aim of this study is to develop and clinically validate a 1.5T MRI-conditional 12-lead ECG system. METHODS: The system was constructed with transmission lines to reduce radiofrequency induction and switching circuits to remove induced voltages. Adaptive filters, trained by 12-lead measurements outside MRI and in two orientations inside MRI, were used to remove the magneto-hydro-dynamic voltage. The system was tested on 10 (one exercising) volunteers and four arrhythmia patients. RESULTS: Switching circuits removed most imaging-induced voltages (residual noise <3% of the R-wave). Magneto-hydro-dynamic voltage removal provided intra-MRI ECGs that varied by <3.8% from those outside the MRI, preserving the true S-wave to T-wave segment. In premature ventricular contraction (PVC) patients, clean ECGs separated premature ventricular contraction and sinus rhythm beats. Measured heating was <1.5°C. The system reliably acquired multiphase (steady-state free precession) wall-motion-cine and phase-contrast-cine scans, including subjects in whom 4-lead gating failed. The system required a minimum repetition time of 4 ms to allow robust ECG processing. CONCLUSION: High-fidelity intra-MRI 12-lead ECG is possible.

Stan T Gregory, Ehud J Schmidt, Shelley Hualei Zhang, and Zion Tsz Ho Tse. 2014. “3DQRS: A Method to Obtain Reliable QRS Complex Detection within High Field MRI using 12-Lead Electrocardiogram Traces.” Magn Reson Med, 71, 4, Pp. 1374-80.Abstract

PURPOSE: To develop a technique that accurately detects the QRS complex in 1.5 Tesla (T), 3T, and 7T MRI scanners. METHODS: During early systole, blood is rapidly ejected into the aortic arch, traveling perpendicular to the MRI's main field, which produces a strong voltage (V(MHD)) that eclipses the QRS complex. Greater complexity arises in arrhythmia patients, since V(MHD) varies between sinus-rhythm and arrhythmic beats. The 3DQRS method uses a kernel consisting of 6 electrocardiogram (ECG) precordial leads (V1-V6), compiled from a 12-lead ECG performed outside the magnet. The kernel is cross-correlated with signals acquired inside the MRI to identify the QRS complex in real time. The 3DQRS method was evaluated against a vectorcardiogram (VCG)-based approach in two premature ventricular contraction (PVC) and two atrial fibrillation (AF) patients, a healthy exercising athlete, and eight healthy volunteers, within 1.5T and 3T MRIs, using a prototype MRI-conditional 12-lead ECG system. Two volunteers were recorded at 7T using a Holter recorder. RESULTS: For QRS complex detection, 3DQRS subject-averaged sensitivity levels, relative to VCG were: 1.5T (100% versus 96.7%), 3T (98.9% versus 92.2%), and 7T (96.2% versus 77.7%). CONCLUSION: The 3DQRS method was shown to be more effective in cardiac gating than a conventional VCG-based method.

Bruno Madore, Jr-yuan George Chiou, Renxin Chu, Tzu-Cheng Chao, and Stephan E. Maier. 2014. “Accelerated Multi-shot Diffusion Imaging.” Magn Reson Med, 72, 2, Pp. 324-36.Abstract

PURPOSE: To reduce image distortion in MR diffusion imaging using an accelerated multi-shot method. METHODS: The proposed method exploits the fact that diffusion-encoded data tend to be sparse when represented in the kb-kd space, where kb and kd are the Fourier transform duals of b and d, the b-factor and the diffusion direction, respectively. Aliasing artifacts are displaced toward under-used regions of the kb-kd plane, allowing nonaliased signals to be recovered. A main characteristic of the proposed approach is how thoroughly the navigator information gets used during reconstruction: The phase of navigator images is used for motion correction, while the magnitude of the navigator signal in kb-kd space is used for regularization purposes. As opposed to most acceleration methods based on compressed sensing, the proposed method reduces the number of ky lines needed for each diffusion-encoded image, but not the total number of images required. Consequently, it tends to be most effective at reducing image distortion rather than reducing total scan time. RESULTS: Results are presented for three volunteers with acceleration factors ranging from 4 to 8, with and without the inclusion of parallel imaging. CONCLUSION: An accelerated motion-corrected diffusion imaging method was introduced that achieves good image quality at relatively high acceleration factors.

David Calligaris, Diana Caragacianu, Xiaohui Liu, Isaiah Norton, Christopher J Thompson, Andrea L Richardson, Mehra Golshan, Michael L Easterling, Sandro Santagata, Deborah A Dillon, Ferenc A Jolesz, and Nathalie YR Agar. 2014. “Application of Desorption Electrospray Ionization Mass Spectrometry Imaging in Breast Cancer Margin Analysis.” Proc Natl Acad Sci U S A, 111, 42, Pp. 15184-9.Abstract

Distinguishing tumor from normal glandular breast tissue is an important step in breast-conserving surgery. Because this distinction can be challenging in the operative setting, up to 40% of patients require an additional operation when traditional approaches are used. Here, we present a proof-of-concept study to determine the feasibility of using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) for identifying and differentiating tumor from normal breast tissue. We show that tumor margins can be identified using the spatial distributions and varying intensities of different lipids. Several fatty acids, including oleic acid, were more abundant in the cancerous tissue than in normal tissues. The cancer margins delineated by the molecular images from DESI-MSI were consistent with those margins obtained from histological staining. Our findings prove the feasibility of classifying cancerous and normal breast tissues using ambient ionization MSI. The results suggest that an MS-based method could be developed for the rapid intraoperative detection of residual cancer tissue during breast-conserving surgery.

Andriy Fedorov, William M Wells, Ron Kikinis, Clare M Tempany, and Mark G Vangel. 2014. “Application of Tolerance Limits to the Characterization of Image Registration Performance.” IEEE Trans Med Imaging, 33, 7, Pp. 1541-50.Abstract

Deformable image registration is used increasingly in image-guided interventions and other applications. However, validation and characterization of registration performance remain areas that require further study. We propose an analysis methodology for deriving tolerance limits on the initial conditions for deformable registration that reliably lead to a successful registration. This approach results in a concise summary of the probability of registration failure, while accounting for the variability in the test data. The (β, γ) tolerance limit can be interpreted as a value of the input parameter that leads to successful registration outcome in at least 100β% of cases with the 100γ% confidence. The utility of the methodology is illustrated by summarizing the performance of a deformable registration algorithm evaluated in three different experimental setups of increasing complexity. Our examples are based on clinical data collected during MRI-guided prostate biopsy registered using publicly available deformable registration tool. The results indicate that the proposed methodology can be used to generate concise graphical summaries of the experiments, as well as a probabilistic estimate of the registration outcome for a future sample. Its use may facilitate improved objective assessment, comparison and retrospective stress-testing of deformable.

Jagadaeesan Jayender, Sona Chikarmane, Ferenc A Jolesz, and Eva Gombos. 2014. “Automatic Segmentation of Invasive Breast Carcinomas from Dynamic Contrast-Enhanced MRi using Time Series Analysis.” J Magn Reson Imaging, 40, 2, Pp. 467-75.Abstract

PURPOSE: To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast-enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. MATERIALS AND METHODS: Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise, and fitting algorithms. We modeled the underlying dynamics of the tumor by an LDS and used the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist's segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). RESULTS: The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared with the radiologist's segmentation and 82.1% accuracy and 100% sensitivity when compared with the CADstream output. The overlap of the algorithm output with the radiologist's segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72, respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC = 0.95. CONCLUSION: The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI.

Stephan E. Maier, Dimitris Mitsouras, and Robert V. Mulkern. 2014. “Avian Egg Latebra as Brain Tissue Water Diffusion Model.” Magn Reson Med, 72, 2, Pp. 501-9.Abstract

PURPOSE: Simplified models of non-monoexponential diffusion signal decay are of great interest to study the basic constituents of complex diffusion behavior in tissues. The latebra, a unique structure uniformly present in the yolk of avian eggs, exhibits a non-monoexponential diffusion signal decay. This model is more complex than simple phantoms based on differences between water and lipid diffusion, but is also devoid of microscopic structures with preferential orientation or perfusion effects. METHODS: Diffusion scans with multiple b-values were performed on a clinical 3 Tesla system in raw and boiled chicken eggs equilibrated to room temperature. Diffusion encoding was applied over the ranges 5-5,000 and 5-50,000 s/mm(2). A low read-out bandwidth and chemical shift was used for reliable lipid/water separation. Signal decays were fitted with exponential functions. RESULTS: The latebra, when measured over the 5-5,000 s/mm(2) range, exhibited independent of preparation clearly biexponential diffusion, with diffusion parameters similar to those typically observed in in vivo human brain. For the range 5-50,000 s/mm(2), there was evidence of a small third, very slow diffusing water component. CONCLUSION: The latebra of the avian egg contains membrane structures, which may explain a deviation from a simple monoexponential diffusion signal decay, which is remarkably similar to the deviation observed in brain tissue.

Andriy Fedorov, Jacob Fluckiger, Gregory D Ayers, Xia Li, Sandeep N Gupta, Clare Tempany, Robert Mulkern, Thomas E Yankeelov, and Fiona M Fennessy. 2014. “A Comparison of Two Methods for Estimating DCE-MRI Parameters via Individual and Cohort Based AIFs in Prostate Cancer: A Step towards Practical Implementation.” Magn Reson Imaging, 32, 4, Pp. 321-9.Abstract

Multi-parametric Magnetic Resonance Imaging, and specifically Dynamic Contrast Enhanced (DCE) MRI, play increasingly important roles in detection and staging of prostate cancer (PCa). One of the actively investigated approaches to DCE MRI analysis involves pharmacokinetic (PK) modeling to extract quantitative parameters that may be related to microvascular properties of the tissue. It is well-known that the prescribed arterial blood plasma concentration (or Arterial Input Function, AIF) input can have significant effects on the parameters estimated by PK modeling. The purpose of our study was to investigate such effects in DCE MRI data acquired in a typical clinical PCa setting. First, we investigated how the choice of a semi-automated or fully automated image-based individualized AIF (iAIF) estimation method affects the PK parameter values; and second, we examined the use of method-specific averaged AIF (cohort-based, or cAIF) as a means to attenuate the differences between the two AIF estimation methods. Two methods for automated image-based estimation of individualized (patient-specific) AIFs, one of which was previously validated for brain and the other for breast MRI, were compared. cAIFs were constructed by averaging the iAIF curves over the individual patients for each of the two methods. Pharmacokinetic analysis using the Generalized kinetic model and each of the four AIF choices (iAIF and cAIF for each of the two image-based AIF estimation approaches) was applied to derive the volume transfer rate (K(trans)) and extravascular extracellular volume fraction (ve) in the areas of prostate tumor. Differences between the parameters obtained using iAIF and cAIF for a given method (intra-method comparison) as well as inter-method differences were quantified. The study utilized DCE MRI data collected in 17 patients with histologically confirmed PCa. Comparison at the level of the tumor region of interest (ROI) showed that the two automated methods resulted in significantly different (p<0.05) mean estimates of ve, but not of K(trans). Comparing cAIF, different estimates for both ve, and K(trans) were obtained. Intra-method comparison between the iAIF- and cAIF-driven analyses showed the lack of effect on ve, while K(trans) values were significantly different for one of the methods. Our results indicate that the choice of the algorithm used for automated image-based AIF determination can lead to significant differences in the values of the estimated PK parameters. K(trans) estimates are more sensitive to the choice between cAIF/iAIF as compared to ve, leading to potentially significant differences depending on the AIF method. These observations may have practical consequences in evaluating the PK analysis results obtained in a multi-site setting.

Pages