Publications

2016
Ciris PA, Balasubramanian M, Damato AL, Seethamraju RT, Tempany-Afdhal CM, Mulkern RV, Viswanathan AN. Characterizing Gradient Echo Signal Decays in Gynecologic Cancers at 3T using a Gaussian Augmentation of the Monoexponential (GAME) Model. J Magn Reson Imaging. 2016;44 (4) :1020-30.Abstract

PURPOSE: To assess whether R2* mapping with a standard Monoexponential (ME) or a Gaussian Augmentation of the Monoexponential (GAME) decay model better characterizes gradient-echo signal decays in gynecological cancers after external beam radiation therapy at 3T, and evaluate implications of modeling for noninvasive identification of intratumoral hypoxia. MATERIALS AND METHODS: Multi-gradient-echo signals were acquired on 25 consecutive patients with gynecologic cancers and three healthy participants during inhalation of different oxygen concentrations at 3T. Data were fitted with both ME and GAME models. Models were compared using F-tests in tumors and muscles in patients, muscles, cervix, and uterus in healthy participants, and across oxygenation levels. RESULTS: GAME significantly improved fitting over ME (P < 0.05): Improvements with GAME covered 34% of tumor regions-of-interest on average, ranging from 6% (of a vaginal tumor) to 68% (of a cervical tumor) in individual tumors. Improvements with GAME were more prominent in areas that would be assumed hypoxic based on ME alone, reaching 90% as ME R2* approached 100 Hz. Gradient echo decay parameters at different oxygenation levels were not significantly different (P = 0.81). CONCLUSION: R2* may prove sensitive to hypoxia; however, inaccurate representations of underlying data may limit the success of quantitative assessments. Although the degree to which R2 or σ values correlate with hypoxia remains unknown, improved characterization with GAME increases the potential for determining any correlates of fit parameters with biomarkers, such as oxygenation status. J. MAGN. RESON. IMAGING 2016;44:1020-1030.

Tempany CM. Opportunities for Multiparametric MRI with PI-RADS v2 to Make a Difference. Future Oncol. 2016;12 (21) :2397-9.
Gombos EC, Jayender J, Richman DM, Caragacianu DL, Mallory MA, Jolesz FA, Golshan M. Intraoperative Supine Breast MR Imaging to Quantify Tumor Deformation and Detection of Residual Breast Cancer: Preliminary Results. Radiology. 2016;281 (3) :720-9.Abstract
Purpose To use intraoperative supine magnetic resonance (MR) imaging to quantify breast tumor deformation and displacement secondary to the change in patient positioning from imaging (prone) to surgery (supine) and to evaluate residual tumor immediately after breast-conserving surgery (BCS). Materials and Methods Fifteen women gave informed written consent to participate in this prospective HIPAA-compliant, institutional review board-approved study between April 2012 and November 2014. Twelve patients underwent lumpectomy and postsurgical intraoperative supine MR imaging. Six of 12 patients underwent both pre- and postsurgical supine MR imaging. Geometric, structural, and heterogeneity metrics of the cancer and distances of the tumor from the nipple, chest wall, and skin were computed. Mean and standard deviations of the changes in volume, surface area, compactness, spherical disproportion, sphericity, and distances from key landmarks were computed from tumor models. Imaging duration was recorded. Results The mean differences in tumor deformation metrics between prone and supine imaging were as follows: volume, 23.8% (range, -30% to 103.95%); surface area, 6.5% (range, -13.24% to 63%); compactness, 16.2% (range, -23% to 47.3%); sphericity, 6.8% (range, -9.10% to 20.78%); and decrease in spherical disproportion, -11.3% (range, -60.81% to 76.95%). All tumors were closer to the chest wall on supine images than on prone images. No evidence of residual tumor was seen on MR images obtained after the procedures. Mean duration of pre- and postoperative supine MR imaging was 25 minutes (range, 18.4-31.6 minutes) and 19 minutes (range, 15.1-22.9 minutes), respectively. Conclusion Intraoperative supine breast MR imaging, when performed in conjunction with standard prone breast MR imaging, enables quantification of breast tumor deformation and displacement secondary to changes in patient positioning from standard imaging (prone) to surgery (supine) and may help clinicians evaluate for residual tumor immediately after BCS. (©) RSNA, 2016 Online supplemental material is available for this article.
Kapur T, Pieper S, Fedorov A, Fillion-Robin J-C, Halle M, O'Donnell L, Lasso A, Ungi T, Pinter C, Finet J, et al. Increasing the Impact of Medical Image Computing using Community-based Open-access Hackathons: The NA-MIC and 3D Slicer Experience. Med Image Anal. 2016;33 :176-80.Abstract

The National Alliance for Medical Image Computing (NA-MIC) was launched in 2004 with the goal of investigating and developing an open source software infrastructure for the extraction of information and knowledge from medical images using computational methods. Several leading research and engineering groups participated in this effort that was funded by the US National Institutes of Health through a variety of infrastructure grants. This effort transformed 3D Slicer from an internal, Boston-based, academic research software application into a professionally maintained, robust, open source platform with an international leadership and developer and user communities. Critical improvements to the widely used underlying open source libraries and tools-VTK, ITK, CMake, CDash, DCMTK-were an additional consequence of this effort. This project has contributed to close to a thousand peer-reviewed publications and a growing portfolio of US and international funded efforts expanding the use of these tools in new medical computing applications every year. In this editorial, we discuss what we believe are gaps in the way medical image computing is pursued today; how a well-executed research platform can enable discovery, innovation and reproducible science ("Open Science"); and how our quest to build such a software platform has evolved into a productive and rewarding social engineering exercise in building an open-access community with a shared vision.

Li X, Li C, Fedorov A, Kapur T, Yang X. Segmentation of Prostate from Ultrasound Images using Level Sets on Active Band and Intensity Variation Across Edges. Med Phys. 2016;43 (6) :3090.Abstract

PURPOSE: In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. METHODS: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors' method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. RESULTS: The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors' model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors' method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. CONCLUSIONS: As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate.

Zaidi HA, De Los Reyes K, Barkhoudarian G, Litvack ZN, Bi WL, Rincon-Torroella J, Mukundan S, Dunn IF, Laws ER. The Utility of High-resolution Intraoperative MRI in Endoscopic Transsphenoidal Surgery for Pituitary Macroadenomas: Early Experience in the Advanced Multimodality Image Guided Operating Suite. Neurosurg Focus. 2016;40 (3) :E18.Abstract

OBJECTIVE: Endoscopic skull base surgery has become increasingly popular among the skull base surgery community, with improved illumination and angled visualization potentially improving tumor resection rates. Intraoperative MRI (iMRI) is used to detect residual disease during the course of the resection. This study is an investigation of the utility of 3-T iMRI in combination with transnasal endoscopy with regard to gross-total resection (GTR) of pituitary macroadenomas. METHODS: The authors retrospectively reviewed all endoscopic transsphenoidal operations performed in the Advanced Multimodality Image Guided Operating (AMIGO) suite from November 2011 to December 2014. Inclusion criteria were patients harboring presumed pituitary macroadenomas with optic nerve or chiasmal compression and visual loss, operated on by a single surgeon. RESULTS: Of the 27 patients who underwent transsphenoidal resection in the AMIGO suite, 20 patients met the inclusion criteria. The endoscope alone, without the use of iMRI, would have correctly predicted extent of resection in 13 (65%) of 20 cases. Gross-total resection was achieved in 12 patients (60%) prior to MRI. Intraoperative MRI helped convert 1 STR and 4 NTRs to GTRs, increasing the number of GTRs from 12 (60%) to 16 (80%). CONCLUSIONS: Despite advances in visualization provided by the endoscope, the incidence of residual disease can potentially place the patient at risk for additional surgery. The authors found that iMRI can be useful in detecting unexpected residual tumor. The cost-effectiveness of this tool is yet to be determined.

Hata N, Song S-E, Olubiyi O, Arimitsu Y, Fujimoto K, Kato T, Tuncali K, Tani S, Tokuda J. Body-mounted Robotic Instrument Guide for Image-guided Cryotherapy of Renal Cancer. Med Phys. 2016;43 (2) :843-53.Abstract

PURPOSE: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient's whole body motion. METHODS: Keeping the device's minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient's body, even in the presence of the patient's frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors' validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. RESULTS: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth of 80 mm. The phantom test indicated that the accuracy of probe placement was significantly better with the robotic instrument guide (4.1 mm) than without the guide (6.3 mm, p<0.001), even in the presence of body motion. When independent organ motion was artificially added, in addition to body motion, the advantage of accurate probe placement using the robotic instrument guide disappeared statistically [i.e., 6.0 mm with the robotic guide and 5.9 mm without the robotic guide (p = 0.906)]. When the robotic instrument guide was used, the total time required to complete the procedure was reduced from 19.6 to 12.7 min (p<0.001). Multivariable analysis indicated that the robotic instrument guide, not the organ motion, was the cause of statistical significance. The statistical power the authors obtained was 88% in accuracy assessment and 99% higher in duration measurement. CONCLUSIONS: The body-mounted robotic instrument guide allows positioning of the probe during image-guided cryotherapy of renal cancer and was done in fewer attempts and in less time than the free-hand approach. The accuracy of the placement of the cryotherapy probe was better using the robotic instrument guide than without the guide when no organ motion was present. The accuracy between the robotic and free-hand approach becomes comparable when organ motion was present.

Ciris PA, Balasubramanian M, Seethamraju RT, Tokuda J, Scalera J, Penzkofer T, Fennessy FM, Tempany-Afdhal CM, Tuncali K, Mulkern RV. Characterization of Gradient Echo Signal Decays in Healthy and Cancerous Prostate at 3T Improves with a Gaussian Augmentation of the Mono-Exponential (Game) Model. NMR Biomed. 2016;29 (7) :999-1009.Abstract

A biomarker of cancer aggressiveness, such as hypoxia, could substantially impact treatment decisions in the prostate, especially radiation therapy, by balancing treatment morbidity (urinary incontinence, erectile dysfunction, etc.) against mortality. R2 (*) mapping with Mono-Exponential (ME) decay modeling has shown potential for identifying areas of prostate cancer hypoxia at 1.5T. However, Gaussian deviations from ME decay have been observed in other tissues at 3T. The purpose of this study is to assess whether gradient-echo signal decays are better characterized by a standard ME decay model, or a Gaussian Augmentation of the Mono-Exponential (GAME) decay model, in the prostate at 3T. Multi-gradient-echo signals were acquired on 20 consecutive patients with a clinical suspicion of prostate cancer undergoing MR-guided prostate biopsies. Data were fitted with both ME and GAME models. The information contents of these models were compared using Akaike's information criterion (second order, AICC ), in skeletal muscle, the prostate central gland (CG), and peripheral zone (PZ) regions of interest (ROIs). The GAME model had higher information content in 30% of the prostate on average (across all patients and ROIs), covering up to 67% of cancerous PZ ROIs, and up to 100% of cancerous CG ROIs (in individual patients). The higher information content of GAME became more prominent in regions that would be assumed hypoxic using ME alone, reaching 50% of the PZ and 70% of the CG as ME R2 (*) approached 40 s(-1) . R2 (*) mapping may have important applications in MRI; however, information lost due to modeling could mask differences in parameters due to underlying tissue anatomy or physiology. The GAME model improves characterization of signal behavior in the prostate at 3T, and may increase the potential for determining correlates of fit parameters with biomarkers, for example of oxygenation status.

Lu FK, Calligaris D, Olubiyi OI, Norton I, Yang W, Santagata S, Xie SX, Golby AJ, Agar NYR. Label-Free Neurosurgical Pathology with Stimulated Raman Imaging. Cancer Res. 2016;76 (12) :3451-62.Abstract

The goal of brain tumor surgery is to maximize tumor removal without injuring critical brain structures. Achieving this goal is challenging as it can be difficult to distinguish tumor from nontumor tissue. While standard histopathology provides information that could assist tumor delineation, it cannot be performed iteratively during surgery as freezing, sectioning, and staining of the tissue require too much time. Stimulated Raman scattering (SRS) microscopy is a powerful label-free chemical imaging technology that enables rapid mapping of lipids and proteins within a fresh specimen. This information can be rendered into pathology-like images. Although this approach has been used to assess the density of glioma cells in murine orthotopic xenografts models and human brain tumors, tissue heterogeneity in clinical brain tumors has not yet been fully evaluated with SRS imaging. Here we profile 41 specimens resected from 12 patients with a range of brain tumors. By evaluating large-scale stimulated Raman imaging data and correlating this data with current clinical gold standard of histopathology for 4,422 fields of view, we capture many essential diagnostic hallmarks for glioma classification. Notably, in fresh tumor samples, we observe additional features, not seen by conventional methods, including extensive lipid droplets within glioma cells, collagen deposition in gliosarcoma, and irregularity and disruption of myelinated fibers in areas infiltrated by oligodendroglioma cells. The data are freely available in a public resource to foster diagnostic training and to permit additional interrogation. Our work establishes the methodology and provides a significant collection of reference images for label-free neurosurgical pathology. Cancer Res; 76(12); 3451-62. ©2016 AACR.

Behringer PA, Herz C, Penzkofer T, Tuncali K, Tempany CM, Fedorov A. Open-Source Platform for Prostate Motion Tracking During in-Bore Targeted MRI-Guided Biopsy. Clin Image Based Proced. 2016;9401 :122-9.Abstract

Accurate sampling of cancer suspicious locations is critical in targeted prostate biopsy, but can be complicated by the motion of the prostate. We present an open-source software for intra-procedural tracking of the prostate and biopsy targets using deformable image registration. The software is implemented in 3D Slicer and is intended for clinical users. We evaluated accuracy, computation time and sensitivity to initialization, and compared implementations that use different versions of the Insight Segmentation Toolkit (ITK). Our retrospective evaluation used data from 25 in-bore MRI-guided prostate biopsy cases (343 registrations total). Prostate Dice similarity coefficient improved on average by 0.17 (p < 0.0001, range 0.02-0.48). Registration was not sensitive to operator variability. Computation time decreased significantly for the implementation using the latest version of ITK. In conclusion, we presented a fully functional open-source tool that is ready for prospective evaluation during clinical MRI-guided prostate biopsy interventions.

Fedorov A, Tuncali K, Panych LP, Fairhurst J, Hassanzadeh E, Seethamraju RT, Tempany CM, Maier SE. Segmented Diffusion-Weighted Imaging of the Prostate: Application to Transperineal In-bore 3T MR Image-guided Targeted Biopsy. Magn Reson Imaging. 2016;34 (8) :1146-54.Abstract

OBJECTIVE: This study aims to evaluate the applicability of using single-shot and multi-shot segmented diffusion-weighted imaging (DWI) techniques to support biopsy target localization in a cohort of targeted MRI-guided prostate biopsy patients. MATERIALS AND METHODS: Single-shot echo-planar diffusion-weighted imaging (SS-DWI) and multi-shot segmented (MS-DWI) were performed intra-procedurally on a 3Tesla system in a total of 35 men, who underwent in-bore prostate biopsy inside the scanner bore. Comparisons between SS-DWI and MS-DWI were performed with (in 16 men) and without (in 19 men) parallel coil acceleration (iPAT) for SS-DWI. Overall image quality and artifacts were scored by a radiologist and scores were compared with the Wilcoxon-Mann-Whitney rank test. Correlation between the presence of air and image quality scores was evaluated with Spearman statistics. To quantify distortion, the anteroposterior prostate dimension was measured in SS and MS b=0 diffusion- and T2-weighted images. Signal-to-noise ratio was estimated in a phantom experiment. Agreement and accuracy of targeting based on retrospective localization of restricted diffusion areas in DWI was evaluated with respect to the targets identified using multi-parametric MRI (mpMRI). RESULTS: Compared to SS-DWI without iPAT, the average image quality score in MS-DWI improved from 2.0 to 3.3 (p<0.005) and the artifact score improved from 2.3 to 1.4 (p<0.005). When iPAT was used in SS-DWI, the average image quality score in MS-DWI improved from 2.6 to 3.3 (p<0.05) and the artifact score improved from 2.1 to 1.4 (p<0.01). Image quality (ρ=-0.74, p<0.0005) and artifact scores (ρ=0.77, p<0.0005) both showed strong correlation with the presence of air in the rectum for the SS-DWI sequence without iPAT. These correlations remained significant when iPAT was enabled (ρ=-0.52, p<0.05 and ρ=0.64, p<0.01). For the comparison MS-DWI vs SS-DWI without iPAT, median differences between diffusion- and T2-weighted image gland measurements were 1.1(0.03-10.4)mm and 4.4(0.5-22.7)mm, respectively. In the SS-DWI-iPAT cohort, median gland dimension differences were 2.7(0.4-5.9)mm and 4.2(0.7-8.9)mm, respectively. Out of the total of 89 targets identified in mpMRI, 20 had corresponding restricted diffusion areas in SS-DWI and 28 in MS-DWI. No statistically significant difference was observed between the distances for the targets in the target-concordant SS- and MS-DWI restricted diffusion areas (5.5mm in SS-DWI vs 4.5mm in MS-DWI, p>0.05). CONCLUSIONS: MS-DWI applied to prostate imaging leads to a significant reduction of image distortion in comparison with SS-DWI. There is no sufficient evidence however to suggest that intra-procedural DWI can serve as a replacement for tracking of the targets identified in mpMRI for the purposes of targeted MRI-guided prostate biopsy.

Eslami S, Shang W, Li G, Patel N, Fischer GS, Tokuda J, Hata N, Tempany CM, Iordachita I. In-bore Prostate Transperineal Interventions with an MRI-guided Parallel Manipulator: System Development and Preliminary Evaluation. Int J Med Robot. 2016;12 (2) :199-213.Abstract

BACKGROUND: Robot-assisted minimally-invasive surgery is well recognized as a feasible solution for diagnosis and treatment of prostate cancer in humans. METHODS: This paper discusses the kinematics of a parallel 4 Degrees-of-Freedom (DOF) surgical manipulator designed for minimally invasive in-bore prostate percutaneous interventions through the patient's perineum. The proposed manipulator takes advantage of four sliders actuated by MRI-compatible piezoelectric motors and incremental rotary encoders. Errors, mostly originating from the design and manufacturing process, need to be identified and reduced before the robot is deployed in clinical trials. RESULTS: The manipulator has undergone several experiments to evaluate the repeatability and accuracy (about 1 mm in air (in x or y direction) at the needle's reference point) of needle placement, which is an essential concern in percutaneous prostate interventions. CONCLUSION: The acquired results endorse the sustainability, precision and reliability of the manipulator. Copyright © 2015 John Wiley & Sons, Ltd.

Tani S, Tatli S, Hata N, Garcia-Rojas X, Olubiyi OI, Silverman SG, Tokuda J. Three-dimensional Quantitative Assessment of Ablation Margins Based on Registration of Pre- and Post-procedural MRI and Distance Map. Int J Comput Assist Radiol Surg. 2016;11 (6) :1133-42.Abstract

PURPOSE: Contrast-enhanced MR images are widely used to confirm the adequacy of ablation margin after liver ablation for early prediction of local recurrence. However, quantitative assessment of the ablation margin by comparing pre- and post-procedural images remains challenging. We developed and tested a novel method for three-dimensional quantitative assessment of ablation margin based on non-rigid image registration and 3D distance map. METHODS: Our method was tested with pre- and post-procedural MR images acquired in 21 patients who underwent image-guided percutaneous liver ablation. The two images were co-registered using non-rigid intensity-based registration. After the tumor and ablation volumes were segmented, target volume coverage, percent of tumor coverage, and Dice similarity coefficient were calculated as metrics representing overall adequacy of ablation. In addition, 3D distance map around the tumor was computed and superimposed on the ablation volume to identify the area with insufficient margins. For patients with local recurrences, the follow-up images were registered to the post-procedural image. Three-dimensional minimum distance between the recurrence and the areas with insufficient margins was quantified. RESULTS: The percent tumor coverage for all nonrecurrent cases was 100 %. Five cases had tumor recurrences, and the 3D distance map revealed insufficient tumor coverage or a 0-mm margin. It also showed that two recurrences were remote to the insufficient margin. CONCLUSIONS: Non-rigid registration and 3D distance map allow us to quantitatively evaluate the adequacy of the ablation margin after percutaneous liver ablation. The method may be useful to predict local recurrences immediately following ablation procedure.

Mehrtash A, Gupta SN, Shanbhag D, Miller JV, Kapur T, Fennessy FM, Kikinis R, Fedorov A. Bolus Arrival Time and its Effect on Tissue Characterization with Dynamic Contrast-enhanced Magnetic Resonance Imaging. J Med Imaging (Bellingham). 2016;3 (1) :014503.Abstract

Matching the bolus arrival time (BAT) of the arterial input function (AIF) and tissue residue function (TRF) is necessary for accurate pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We investigated the sensitivity of volume transfer constant ([Formula: see text]) and extravascular extracellular volume fraction ([Formula: see text]) to BAT and compared the results of four automatic BAT measurement methods in characterization of prostate and breast cancers. Variation in delay between AIF and TRF resulted in a monotonous change trend of [Formula: see text] and [Formula: see text] values. The results of automatic BAT estimators for clinical data were all comparable except for one BAT estimation method. Our results indicate that inaccuracies in BAT measurement can lead to variability among DCE-MRI PK model parameters, diminish the quality of model fit, and produce fewer valid voxels in a region of interest. Although the selection of the BAT method did not affect the direction of change in the treatment assessment cohort, we suggest that BAT measurement methods must be used consistently in the course of longitudinal studies to control measurement variability.

Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol. 2016;69 (1) :16-40.Abstract
The Prostate Imaging - Reporting and Data System Version 2 (PI-RADS™ v2) is the product of an international collaboration of the American College of Radiology (ACR), European Society of Uroradiology (ESUR), and AdMetech Foundation. It is designed to promote global standardization and diminish variation in the acquisition, interpretation, and reporting of prostate multiparametric magnetic resonance imaging (mpMRI) examination, and it is based on the best available evidence and expert consensus opinion. It establishes minimum acceptable technical parameters for prostate mpMRI, simplifies and standardizes terminology and content of reports, and provides assessment categories that summarize levels of suspicion or risk of clinically significant prostate cancer that can be used to assist selection of patients for biopsies and management. It is intended to be used in routine clinical practice and also to facilitate data collection and outcome monitoring for research.
Geddes MR, Tie Y, Gabrieli JDE, McGinnis SM, Golby AJ, Whitfield-Gabrieli S. Altered Functional Connectivity in Lesional Peduncular Hallucinosis with REM Sleep Behavior Disorder. Cortex. 2016;74 :96-106.Abstract

Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways.

Ahmadi E, Katnani HA, Daftari Besheli L, Gu Q, Atefi R, Villeneuve MY, Eskandar E, Lev MH, Golby AJ, Gupta R, et al. An Electrocorticography Grid with Conductive Nanoparticles in a Polymer Thick Film on an Organic Substrate Improves CT and MR Imaging. Radiology. 2016;280 (2) :595-601.Abstract

Purpose To develop an electrocorticography (ECoG) grid by using deposition of conductive nanoparticles in a polymer thick film on an organic substrate (PTFOS) that induces minimal, if any, artifacts on computed tomographic (CT) and magnetic resonance (MR) images and is safe in terms of tissue reactivity and MR heating. Materials and Methods All procedures were approved by the Animal Care and Use Committee and complied with the Public Health Services Guide for the Care and Use of Animals. Electrical functioning of PTFOS for cortical recording and stimulation was tested in two mice. PTFOS disks were implanted in two mice; after 30 days, the tissues surrounding the implants were harvested, and tissue injury was studied by using immunostaining. Five neurosurgeons rated mechanical properties of PTFOS compared with conventional grids by using a three-level Likert scale. Temperature increases during 30 minutes of 3-T MR imaging were measured in a head phantom with no grid, a conventional grid, and a PTFOS grid. Two neuroradiologists rated artifacts on CT and MR images of a cadaveric head specimen with no grid, a conventional grid, and a PTFOS grid by using a four-level Likert scale, and the mean ratings were compared between grids. Results Oscillatory local field potentials were captured with cortical recordings. Cortical stimulations in motor cortex elicited muscle contractions. PTFOS implants caused no adverse tissue reaction. Mechanical properties were rated superior to conventional grids (χ(2) test, P < .05). The temperature increase during MR imaging for the three cases of no grid, PTFOS grid, and conventional grid was 3.84°C, 4.05°C, and 10.13°C, respectively. PTFOS induced no appreciable artifacts on CT and MR images, and PTFOS image quality was rated significantly higher than that with conventional grids (two-tailed t test, P < .05). Conclusion PTFOS grids may be an attractive alternative to conventional ECoG grids with regard to mechanical properties, 3-T MR heating profile, and CT and MR imaging artifacts. (©) RSNA, 2016 Online supplemental material is available for this article.

McDannold N, Zhang Y, Vykhodtseva N. Nonthermal Ablation in the Rat Brain using Focused Ultrasound and an Ultrasound Contrast Agent: Long-term Effects. J Neurosurg. 2016;125 (6) :1539-48.Abstract

OBJECTIVE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently under investigation as a less invasive alternative to radiosurgery and resection. A major limitation of the method is that its use is currently restricted to centrally located brain targets. The combination of FUS and a microbubble-based ultrasound contrast agent greatly reduces the ultrasound exposure level needed to ablate brain tissue and could be an effective means to increase the "treatment envelope" for FUS in the brain. This method, however, ablates tissue through a different mechanism: destruction of the microvasculature. It is not known whether nonthermal FUS ablation in substantial volumes of tissue can safely be performed without unexpected effects. The authors investigated this question by ablating volumes in the brains of normal rats. METHODS Overlapping sonications were performed in rats (n = 15) to ablate a volume in 1 hemisphere per animal. The sonications (10-msec bursts at 1 Hz for 60 seconds; peak negative pressure 0.8 MPa) were combined with the ultrasound contrast agent Optison (100 µl/kg). The rats were followed with MRI for 4-9 weeks after FUS, and the brains were examined with histological methods. RESULTS Two weeks after sonication and later, the lesions appeared as cyst-like areas in T2-weighted MR images that were stable over time. Histological examination demonstrated well-defined lesions consisting of a cyst-like cavity that remained lined by astrocytic tissue. Some white matter structures within the sonicated area were partially intact. CONCLUSIONS The results of this study indicate that nonthermal FUS ablation can be used to safely ablate tissue volumes in the brain without unexpected delayed effects. The findings are encouraging for the use of this ablation method in the brain.

Valdés PA, Roberts DW, Lu F-K, Golby A. Optical Technologies for Intraoperative Neurosurgical Guidance. Neurosurg Focus. 2016;40 (3) :E8.Abstract

Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.

Fischer DB, Perez DL, Prasad S, Rigolo L, O'Donnell L, Acar D, Meadows M-E, Baslet G, Boes AD, Golby AJ, et al. Right Inferior Longitudinal Fasciculus Lesions Disrupt Visual-emotional Integration. Soc Cogn Affect Neurosci. 2016;11 (6) :945-51.Abstract

The mechanism by which the brain integrates visual and emotional information remains incompletely understood, and can be studied through focal lesions that selectively disrupt this process. To date, three reported cases of visual hypoemotionality, a vision-specific form of derealization, have resulted from lesions of the temporo-occipital junction. We present a fourth case of this rare phenomenon, and investigate the role of the inferior longitudinal fasciculus (ILF) in the underlying pathophysiology. A 50-year-old right-handed male was found to have a right medial temporal lobe tumor following new-onset seizures. Interstitial laser ablation of the lesion was complicated by a right temporo-parieto-occipital intraparenchymal hemorrhage. The patient subsequently experienced emotional estrangement from visual stimuli. A lesion overlap analysis was conducted to assess involvement of the ILF by this patient's lesion and those of the three previously described cases, and diffusion tensor imaging was acquired in our case to further investigate ILF disruption. All four lesions specifically overlapped with the expected trajectory of the right ILF, and diminished structural integrity of the right ILF was observed in our case. These findings implicate the ILF in visual hypoemotionality, suggesting that the ILF is critical for integrating visual information with its emotional content.

Pages