Publications

2006
Warfield SK, Zou KH, Wells WM. Validation of image segmentation by estimating rater bias and variance. Med Image Comput Comput Assist Interv. 2006;9 (Pt 2) :839-47.Abstract
The accuracy and precision of segmentations of medical images has been difficult to quantify in the absence of a "ground truth" or reference standard segmentation for clinical data. Although physical or digital phantoms can help by providing a reference standard, they do not allow the reproduction of the full range of imaging and anatomical characteristics observed in clinical data. An alternative assessment approach is to compare to segmentations generated by domain experts. Segmentations may be generated by raters who are trained experts or by automated image analysis algorithms. Typically these segmentations differ due to intra-rater and inter-rater variability. The most appropriate way to compare such segmentations has been unclear. We present here a new algorithm to enable the estimation of performance characteristics, and a true labeling, from observations of segmentations of imaging data where segmentation labels may be ordered or continuous measures. This approach may be used with, amongst others, surface, distance transform or level set representations of segmentations, and can be used to assess whether or not a rater consistently over-estimates or under-estimates the position of a boundary.
O'shea JP, Whalen S, Branco DM, Petrovich NM, Knierim KE, Golby AJ. Integrated image- and function-guided surgery in eloquent cortex: a technique report. Int J Med Robot. 2006;2 (1) :75-83.Abstract
The ability to effectively identify eloquent cortex in close proximity to brain tumours is a critical component of surgical planning prior to resection. The use of electrocortical stimulation testing (ECS) during awake neurosurgical procedures remains the gold standard for mapping functional areas, yet the preoperative use of non-invasive brain imaging techniques such as fMRI are gaining popularity as supplemental surgical planning tools. In addition, the intraoperative three-dimensional display of fMRI findings co-registered to structural imaging data maximizes the utility of the preoperative mapping for the surgeon. Advances in these techniques have the potential to limit the size and duration of craniotomies as well as the strain placed on the patient, but more research accurately demonstrating their efficacy is required. In this paper, we demonstrate the integration of preoperative fMRI within a neuronavigation system to aid in surgical planning, as well as the integration of these fMRI data with intraoperative ECS mapping results into a three-dimensional dataset for the purpose of cross-validation.
Hoge SW, Brooks DH. On the complimentarity of SENSE and GRAPPA in parallel MR imaging. Conf Proc IEEE Eng Med Biol Soc. 2006;1 :755-8.Abstract
Two image reconstruction methods currently dominate parallel MR imaging: SENSE and GRAPPA. While both seek to reconstruct images from subsampled multi-channel MRI data, there exist fundamental differences between the two. In particular, SENSE reconstructs an image of the excited spin-density directly whereas GRAPPA reconstructs estimates of the fully sampled raw coil data and then combines them to obtain an image. In this work we show that these differences can be exploited such that each method can compliment the other. In the case of SENSE, which requires an estimate of the coil sensitivity map before reconstruction, one can use GRAPPA to improve the coil sensitivity estimates. Alternatively, using coil sensitivity estimates and the SENSE reconstruction equations, one can improve the GRAPPA reconstruction parameter estimation. Together, these approaches can provide higher image quality than either method alone.
Greenspan M, Wang LI, Ellis R. Validation and improved registration of bone segmentation using contour coherency. Conf Proc IEEE Eng Med Biol Soc. 2006;1 :244-7.Abstract
A method is presented to validate the segmentation of computed tomography (CT) image sequences, and im prove the accuracy and efficiency of the subsequent registration of the 3D surfaces that are reconstructed from the segmented slices. The method compares the shapes of contours extracted from neighborhoods of slices in CT stacks of tibias. The bone is first segmented by an automatic segmentation technique, and the bone contour for each slice is parameterized as a 1-D function of normalized arc length versus inscribed angle. These functions are represented as vectors within a K-dimensional space comprising the first K amplitude coefficients of their Fourier Descriptors. The similarity or coherency of neighboring contours is measured by comparing statistical properties of their vector representations within this space. Experimentation has demonstrated this technique to be very effective at automatically identifying low coherency segmentations, the removal of which significantly improved the accuracy and time efficiency of the registration of 3-D bone surface models.
Mulkern RV, Barnes AS, Haker SJ, Hung YP, Rybicki FJ, Maier SE, Tempany CM. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging. 2006;24 (5) :563-8.Abstract

Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves.

Sheikov N, McDannold N, Jolesz FA, Zhang Y-Z, Tam K, Hynynen K. Brain Arterioles Show more Active Vesicular Transport of Blood-borne Tracer Molecules than Capillaries and Venules after Focused Ultrasound-evoked Opening of the Blood-brain Barrier. Ultrasound Med Biol. 2006;32 (9) :1399-409.Abstract

Previously, activation of vesicular transport in the brain microvasculature was shown to be one of the mechanisms of focused ultrasound-induced blood-brain barrier (BBB) opening. In the present study, we aimed to estimate the rate of the transendothelial vesicular traffic after focused ultrasound sonication in the rabbit brain, using ultrastructural morphometry and horseradish peroxidase (HRP) as a tracer. In the capillaries, the mean endothelial pinocytotic densities (the number of HRP-containing vesicles per microm(2) of the cell cytoplasm) were 0.9 and 1.05 vesicles/microm(2) 1 h after sonication with ultrasound frequencies of 0.69 and 0.26 MHz, respectively. In the arterioles, these densities were 1.63 and 2.43 vesicles/microm(2), values 1.8 and 2.3 times higher. In control locations, the densities were 0.7 and 0.14 vesicles/microm(2) for capillaries and arterioles, respectively. A small number of HRP-positive vesicles were observed in the venules. Focal delivery of HRP tracer was also observed in light microscopy. The results indicate that the precapillary microvessels play an important role in macromolecular transcytoplasmic traffic through the ultrasound-induced BBB modulation, which should be considered in the future development of trans-BBB drug delivery strategies.

Peled S, Friman O, Jolesz FA, Westin C-F. Geometrically Constrained Two-tensor Model for Crossing Tracts in DWI. Magn Reson Imaging. 2006;24 (9) :1263-70.Abstract

MR diffusion tensor imaging (DTI) of the brain and spine provides a unique tool for both visualizing directionality and assessing intactness of white matter fiber tracts in vivo. At the spatial resolution of clinical MRI, much of primate white matter is composed of interdigitating fibers. Analyses based on an assumed single diffusion tensor per voxel yield important information about the average diffusion in the voxel but fail to reveal structure in the presence of crossing tracts. Until today, all clinical scans assume only one tensor, causing potential serious errors in tractography. Since high angular resolution imaging remains, so far, untenable for routine clinical use, a method is proposed whereby the single-tensor field is augmented with additional information gleaned from standard clinical DTI. The method effectively resolves two distinct tract directions within voxels, in which only two tracts are assumed to exist. The underlying constrained two-tensor model is fitted in two stages, utilizing the information present in the single-tensor fit. As a result, the necessary MRI time can be drastically reduced when compared with other approaches, enabling widespread clinical use. Upon evaluation in simulations and application to in vivo human brain DTI data, the method appears to be robust and practical and, if correctly applied, could elucidate tract directions at critical points of uncertainty.

Dimaio SP, Archip N, Hata N, Talos I-F, Warfield SK, Majumdar A, McDannold N, Hynynen K, Morrison PR, Wells WM, et al. Image-guided Neurosurgery at Brigham and Women’s Hospital. IEEE Eng Med Biol Mag. 2006;25 (5) :67-73.
White PJ, Clement GT, Hynynen K. Local Frequency Dependence in Transcranial Ultrasound Transmission. Phys Med Biol. 2006;51 (9) :2293-305.Abstract

The development of large-aperture multiple-source transducer arrays for ultrasound transmission through the human skull has demonstrated the possibility of controlled and substantial acoustic energy delivery into the brain parenchyma without the necessitation of a craniotomy. The individual control of acoustic parameters from each ultrasound source allows for the correction of distortions arising from transmission through the skull bone and also opens up the possibility for electronic steering of the acoustic focus within the brain. In addition, the capability to adjust the frequency of insonation at different locations on the skull can have an effect on ultrasound transmission. To determine the efficacy and applicability of a multiple-frequency approach with such a device, this study examined the frequency dependence of ultrasound transmission in the range of 0.6-1.4 MHz through a series of 17 points on four ex vivo human skulls. Effects beyond those that are characteristic of frequency-dependent attenuation were examined. Using broadband pulses, it was shown that the reflected spectra from the skull revealed information regarding ultrasound transmission at specific frequencies. A multiple-frequency insonation with optimized frequencies over the entirety of five skull specimens was found to yield on average a temporally brief 230% increase in the transmitted intensity with an 88% decrease in time-averaged intensity transmission within the focal volume. This finding demonstrates a potential applicability of a multiple-frequency approach in transcranial ultrasound transmission.

Talos I-F, Mian AZ, Zou KH, Hsu L, Goldberg-Zimring D, Haker S, Bhagwat JG, Mulkern RV. Magnetic Resonance and the Human Brain: Anatomy, Function and Metabolism. Cell Mol Life Sci. 2006;63 (10) :1106-24.Abstract

The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth.

McDannold N, Hynynen K. Quality Assurance and System Stability of a Clinical MRI-guided Focused Ultrasound System: Four-year Experience. Med Phys. 2006;33 (11) :4307-13.Abstract

To retrospectively evaluate the four-year experience of a quality assurance method for a MRI-guided focused ultrasound system that uses temperature maps acquired during heating in an ultrasound/MRI phantom. This quality assurance method was performed before 148 clinical uterine fibroid thermal ablation treatments. The stability of the peak temperature rise, the targeting accuracy, the shape of the heated zone, and the noise level in the imaging was evaluated. The peak temperature rise was mostly stable for the first three years. An increase in heating was observed when the system was replaced after year three. Detection of this increase was taken into account in the subsequent clinical treatments. A small secondary hotspot was detected by the temperature maps and was seen to be resolved after system calibration. The average standard deviation in unheated regions of the phantom in the temperature maps was 0.5 +/- 0.2 degrees C; it was less than 1 degrees C in all but one procedure. The average initial targeting error was 2.8 +/- 1.8 and 2.8 +/- 2.1 mm in two radial directions and 7.7 +/- 2.9 mm along the ultrasound beam direction. The width of the heating profile was consistent over the four years. This simple method to evaluate the performance appeared to be sensitive to small changes in system performance, which was adequately stable over a four-year time period.

2005
Haker S, Wells WM, Warfield SK, Talos I-F, Bhagwat JG, Goldberg-Zimring D, Mian A, Ohno-Machado L, Zou KH. Combining Classifiers using their Receiver Operating Characteristics and Maximum Likelihood Estimation. Med Image Comput Comput Assist Interv. 2005;8 (Pt 1) :506-14.Abstract

In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard strategies are based on learning classifier combination functions from data. We describe a simple strategy to combine results from classifiers that have not been applied to a common data set, and therefore can not undergo this type of joint training. The strategy, which assumes conditional independence of classifiers, is based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using maximum likelihood analysis to determine a combination rule for each ROC operating point. We offer some insights into the use of ROC analysis in the field of medical imaging.

Yang Y, Zhu L, Haker S, Tannenbaum AR, Giddens DP. Harmonic Skeleton Guided Evaluation of Stenoses in Human Coronary Arteries. Med Image Comput Comput Assist Interv. 2005;8 (Pt 1) :490-7.Abstract

This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease.

Haker SJ, Mulkern RV, Roebuck JR, Barnes AS, DiMaio S, Hata N, Tempany CM. Magnetic Resonance Guided Prostate Interventions. Top Magn Reson Imaging. 2005;16 (5) :355-68.Abstract

We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement.

Zhu L, Haker S, Tannenbaum A. Mass Preserving Registration for Heart MR Images. Med Image Comput Comput Assist Interv. 2005;8 (Pt 2) :147-54.Abstract

This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.

Nain D, Haker S, Bobick A, Tannenbaum AR. Multiscale 3D Shape Analysis using Spherical Wavelets. Med Image Comput Comput Assist Interv. 2005;8 (Pt 2) :459-67.Abstract

Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data.

Pages