Toews M, Wachinger C, Estepar RSJ, Wells III WM. A Feature-Based Approach to Big Data Analysis of Medical Images. Inf Process Med Imaging. 2015;24 :339-50.Abstract

This paper proposes an inference method well-suited to large sets of medical images. The method is based upon a framework where distinctive 3D scale-invariant features are indexed efficiently to identify approximate nearest-neighbor (NN) feature matches-in O (log N) computational complexity in the number of images N. It thus scales well to large data sets, in contrast to methods based on pair-wise image registration or feature matching requiring O(N) complexity. Our theoretical contribution is a density estimator based on a generative model that generalizes kernel density estimation and K-nearest neighbor (KNN) methods.. The estimator can be used for on-the-fly queries, without requiring explicit parametric models or an off-line training phase. The method is validated on a large multi-site data set of 95,000,000 features extracted from 19,000 lung CT scans. Subject-level classification identifies all images of the same subjects across the entire data set despite deformation due to breathing state, including unintentional duplicate scans. State-of-the-art performance is achieved in predicting chronic pulmonary obstructive disorder (COPD) severity across the 5-category GOLD clinical rating, with an accuracy of 89% if both exact and one-off predictions are considered correct.

Wachinger C, Toews M, Langs G, Wells III WM, Golland P. Keypoint Transfer Segmentation. Inf Process Med Imaging. 2015;24 :233-45.Abstract

We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm's robustness enables the segmentation of scans with highly variable field-of-view.

Kato T, Okumura I, Song S-E, Golby AJ, Hata N. Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model. IEEE ASME Trans Mechatron. 2015;20 (5) :2252-63.Abstract

In this paper, we present a tendon-driven continuum robot for endoscopic surgery. The robot has two sections for articulation actuated by tendon wires. By actuating the two sections independently, the robot can generate a variety of tip positions while maintaining the tip direction. This feature offers more flexibility in positioning the tip for large viewing angles of up to 180 degrees than does a conventional endoscope. To accurately estimate the tip position at large viewing angles, we employed kinematic mapping with a tension propagation model including friction between the tendon wires and the robot body. In a simulation study using this kinematic-mapping, the two-section robot at a target scale (outer diameter 1.7 mm and length 60 mm) produced a variety of tip positions within 50-mm ranges at the 180°-angle view. In the experimental validation, a 10:1 scale prototype performed three salient postures with different tip positions at the 180°-angle view. The proposed forward kinematic mapping (FKM) predicted the tip position within a tip-to-tip error of 6 mm over the 208-mm articulating length. The tip-to-tip error by FKM was significantly less than the one by conventional piecewise-constant-curvature approximation (PCCA) (FKM: 5.9 ± 2.9 mm vs. PCCA: 23.7 ± 3.6 mm, n=15, P < 0.01).

Jayender J, Lee TC, Ruan DT. Real-Time Localization of Parathyroid Adenoma during Parathyroidectomy. N Engl J Med. 2015;373 (1) :96-8.
Abd-El-Barr MM, Santos SM, Aglio LS, Young GS, Mukundan S, Golby AJ, Gormley WB, Dunn IF. "Extraoperative" MRI (eoMRI) for Brain Tumor Surgery: Initial Results at a Single Institution. World Neurosurg. 2015;83 (6) :921-8.Abstract
BACKGROUND: There is accumulating evidence that extent of resection (EOR) in intrinsic brain tumor surgery prolongs overall survival (OS) and progression-free survival (PFS). One of the strategies to increase EOR is the use of intraoperative MRI (ioMRI); however, considerable infrastructure investment is needed to establish and maintain a sophisticated ioMRI. We report the preliminary results of an extraoperative (eoMRI) protocol, with a focus on safety, feasibility, and EOR in intrinsic brain tumor surgery. METHODS: Ten patients underwent an eoMRI protocol consisting of surgical resection in a conventional operating room followed by an immediate MRI in a clinical MRI scanner while the patient was still under anesthesia. If findings of the MRI suggested residual safely resectable tumor, the patient was returned to the operating room. A retrospective volumetric analysis was undertaken to investigate the percentage of tumor resected after first resection and if applicable, after further resection. RESULTS: Six of 10 (60%) patients were thought to require no further resection after eoMRI. The EOR in these patients was 97.8% ± 1.8%. In the 4 patients who underwent further resection, the EOR during the original surgery was 88.5% ± 9.5% (P = 0.04). There was an average of 10.1% more tumor removed between the first and second surgery. In 3 of 4 (75%) of patients who returned for further resection, gross total resection of tumor was achieved. CONCLUSION: An eoMRI protocol appears to be a safe and practical method to ensure maximum safe resections in patients with brain tumors and can be performed readily in all centers with MRI capabilities.
Tokuda J, Plishker W, Torabi M, Olubiyi OI, Zaki G, Tatli S, Silverman SG, Shekher R, Hata N. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations. Acad Radiol. 2015;22 (6) :722-33.Abstract
RATIONALE AND OBJECTIVES: Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. MATERIALS AND METHODS: Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. RESULTS: Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). CONCLUSIONS: The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice.
Tilak G, Tuncali K, Song S-E, Tokuda J, Olubiyi O, Fennessy F, Fedorov A, Penzkofer T, Tempany CM, Hata N. 3T MR-guided in-bore Transperineal Prostate Biopsy: A Comparison of Robotic and Manual Needle-guidance Templates. J Magn Reson Imaging. 2015;42 (1) :63-71.Abstract

PURPOSE: To demonstrate the utility of a robotic needle-guidance template device as compared to a manual template for in-bore 3T transperineal magnetic resonance imaging (MRI)-guided prostate biopsy. MATERIALS AND METHODS: This two-arm mixed retrospective-prospective study included 99 cases of targeted transperineal prostate biopsies. The biopsy needles were aimed at suspicious foci noted on multiparametric 3T MRI using manual template (historical control) as compared with a robotic template. The following data were obtained: the accuracy of average and closest needle placement to the focus, histologic yield, percentage of cancer volume in positive core samples, complication rate, and time to complete the procedure. RESULTS: In all, 56 cases were performed using the manual template and 43 cases were performed using the robotic template. The mean accuracy of the best needle placement attempt was higher in the robotic group (2.39 mm) than the manual group (3.71 mm, P < 0.027). The mean core procedure time was shorter in the robotic (90.82 min) than the manual group (100.63 min, P < 0.030). Percentage of cancer volume in positive core samples was higher in the robotic group (P < 0.001). Cancer yields and complication rates were not statistically different between the two subgroups (P = 0.557 and P = 0.172, respectively). CONCLUSION: The robotic needle-guidance template helps accurate placement of biopsy needles in MRI-guided core biopsy of prostate cancer.

Mei C-S, Chu R, Hoge WS, Panych LP, Madore B. Accurate Field Mapping in the Presence of B0 Inhomogeneities, Applied to MR Thermometry. Magn Reson Med. 2015;73 (6) :2142-51.Abstract

PURPOSE: To describe how B0 inhomogeneities can cause errors in proton resonance frequency (PRF) shift thermometry, and to correct for these errors. METHODS: With PRF thermometry, measured phase shifts are converted into temperature measurements through the use of a scaling factor proportional to the echo time, TE. However, B0 inhomogeneities can deform, spread, and translate MR echoes, potentially making the "true" echo time vary spatially within the imaged object and take on values that differ from the prescribed TE value. Acquisition and reconstruction methods able to avoid or correct for such errors are presented. RESULTS: Tests were performed in a gel phantom during sonication, and temperature measurements were made with proper shimming as well as with intentionally introduced B0 inhomogeneities. Errors caused by B0 inhomogeneities were observed, described, and corrected by the proposed methods. No statistical difference was found between the corrected results and the reference results obtained with proper shimming, while errors by more than 10% in temperature elevation were corrected for. The approach was also applied to an abdominal in vivo dataset. CONCLUSION: Field variations induce errors in measured field values, which can be detected and corrected. The approach was validated for a PRF thermometry application.

Liu X, Tuncali K, Wells III WM, Zientara GP. Automatic Iceball Segmentation with Adapted Shape Priors for MRI-guided Cryoablation. J Magn Reson Imaging. 2015;41 (2) :517-24.Abstract

PURPOSE: To develop and evaluate an automatic segmentation method that extracts the 3D configuration of the ablation zone, the iceball, from images acquired during the freezing phase of MRI-guided cryoablation. MATERIALS AND METHODS: Intraprocedural images at 63 timepoints from 13 kidney tumor cryoablation procedures were examined retrospectively. The images were obtained using a 3 Tesla wide-bore MRI scanner and axial HASTE sequence. Initialized with semiautomatically localized cryoprobes, the iceball was segmented automatically at each timepoint using the graph cut (GC) technique with adapted shape priors. RESULTS: The average Dice Similarity Coefficients (DSC), compared with manual segmentations, were 0.88, 0.92, 0.92, 0.93, and 0.93 at 3, 6, 9, 12, and 15 min timepoints, respectively, and the average DSC of the total 63 segmentations was 0.92 ± 0.03. The proposed method improved the accuracy significantly compared with the approach without shape prior adaptation (P = 0.026). The number of probes involved in the procedure had no apparent influence on the segmentation results using our technique. The average computation time was 20 s, which was compatible with an intraprocedural setting. CONCLUSION: Our automatic iceball segmentation method demonstrated high accuracy and robustness for practical use in monitoring the progress of MRI-guided cryoablation.

Lu Y, Yeung C, Radmanesh A, Wiemann R, Black PM, Golby AJ. Comparative Effectiveness of Frame-Based, Frameless, and Intraoperative Magnetic Resonance Imaging–Guided Brain Biopsy Techniques. World Neurosurg. 2015;83 (3) :261-8.Abstract

OBJECTIVE: To compare the diagnostic yield and safety profiles of intraoperative magnetic resonance imaging (MRI)-guided needle brain biopsy with 2 traditional brain biopsy methods: frame-based and frameless stereotactic brain biopsy. METHODS: A retrospective analysis was performed of 288 consecutive needle brain biopsies in 277 patients undergoing stereotactic brain biopsy with any of the 3 biopsy methods at Brigham and Women's Hospital from 2000-2008. Variables including age, sex, history of radiation and previous surgery, pathology results, complications, and postoperative length of hospital stay were analyzed. RESULTS: Over the course of 8 years, 288 brain biopsies were performed. Of these, 253 (87.8%) biopsies yielded positive diagnostic tissue. Young age (<40 years old) and history of brain radiation or surgery were significant negative predictors for a positive biopsy diagnostic yield. Excluding patients with prior radiation or surgeries, no significant difference in diagnostic yield was detected among the 3 groups, with frame-based biopsies yielding 96.9%, frameless biopsies yielding 91.8%, and intraoperative MRI-guided needle biopsies yielding 89.9% positive diagnostic yield. Serious adverse events occurred 19 biopsies (6.6%). Intraoperative MRI-guided brain biopsies were associated with less serious adverse events and the shortest postoperative hospital stay. CONCLUSIONS: Frame-based, frameless stereotactic, and intraoperative MRI-guided brain needle biopsy techniques have comparable diagnostic yield for patients with no prior treatments (either radiation or surgery). Intraoperative MRI-guided brain biopsy is associated with fewer serious adverse events and shorter hospital stay.

Radmanesh A, Zamani AA, Whalen S, Tie Y, Suarez RO, Golby AJ. Comparison of Seeding Methods for Visualization of the Corticospinal Tracts using Single Tensor Tractography. Clin Neurol Neurosurg. 2015;129 :44-9.Abstract

OBJECTIVES: To compare five different seeding methods to delineate hand, foot, and lip components of the corticospinal tract (CST) using single tensor tractography. METHODS: We studied five healthy subjects and 10 brain tumor patients. For each subject, we used five different seeding methods, from (1) cerebral peduncle (CP), (2) posterior limb of the internal capsule (PLIC), (3) white matter subjacent to functional MRI activations (fMRI), (4) whole brain and then selecting the fibers that pass through both fMRI and CP (WBF-CP), and (5) whole brain and then selecting the fibers that pass through both fMRI and PLIC (WBF-PLIC). Two blinded neuroradiologists rated delineations as anatomically successful or unsuccessful tractography. The proportions of successful trials from different methods were compared by Fisher's exact test. RESULTS: To delineate hand motor tract, seeding through fMRI activation areas was more effective than through CP (p<0.01), but not significantly different from PLIC (p>0.1). WBF-CP delineated hand motor tracts in a larger proportion of trials than CP alone (p<0.05). Similarly, WBF-PLIC depicted hand motor tracts in a larger proportion of trials than PLIC alone (p<0.01). Foot motor tracts were delineated in all trials by either PLIC or whole brain seeding (WBF-CP and WBF-PLIC). Seeding from CP or fMRI activation resulted in foot motor tract visualization in 87% of the trials (95% confidence interval: 60-98%). The lip motor tracts were delineated only by WBF-PLIC and in 36% of trials (95% confidence interval: 11-69%). CONCLUSIONS: Whole brain seeding and then selecting the tracts that pass through two anatomically relevant ROIs can delineate more plausible hand and lip motor tracts than seeding from a single ROI. Foot motor tracts can be successfully delineated regardless of the seeding method used.

Oster J, Llinares R, Payne S, Tse ZTH, Schmidt EJ, Clifford GD. Comparison of Three Artificial Models of the Magnetohydrodynamic Effect on the Electrocardiogram. Comput Methods Biomech Biomed Engin. 2015;18 (13) :1400-17.Abstract

The electrocardiogram (ECG) is often acquired during magnetic resonance imaging (MRI), but its analysis is restricted by the presence of a strong artefact, called magnetohydrodynamic (MHD) effect. MHD effect is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolarisation period. In this study, a new MHD model is proposed by using MRI-based 4D blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models, based, respectively, on an analytical solution and on a numerical method-based solution of the fluids dynamics problem, is made with the proposed model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a moderate agreement between the proposed model and the estimated MHD model for most leads, with an average correlation factor of 0.47. However, the results demonstrate that the proposed model provides a closer approximation to the observed MHD effects and a better depiction of the complexity of the MHD effect compared with the previously published models, with an improved correlation (+5%), coefficient of determination (+22%) and fraction of energy (+1%) compared with the best previous model. The source code will be made freely available under an open source licence to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect.

O'Donnell LJ, Pasternak O. Does Diffusion MRI Tell Us Anything about the White Matter? An Overview of Methods and Pitfalls. Schizophr Res. 2015;161 (1) :133-41.Abstract

One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering "Does dMRI tell us anything about the white matter?" We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail.

Aryal M, Park J, Vykhodtseva N, Zhang Y-Z, McDannold N. Enhancement in Blood-Tumor Barrier Permeability and Delivery of Liposomal Doxorubicin using Focused Ultrasound and Microbubbles: Evaluation during Tumor Progression in a Rat Glioma Model. Phys Med Biol. 2015;60 (6) :2511-27.Abstract

Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the 'blood tumor barrier' (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg(-1). This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g(-1)) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P < 0.05, P < 0.01, and P < 0.0001 at days 9, 14, and 17, respectively) and were greater than the control tumors by a factor of two or more (2222  ±  784, 3687  ±  796 and 5658  ±  821 ng g(-1)) regardless of the stage of tumor growth. The transfer coefficient Ktrans was significantly (P < 0.05) enhanced compared to control tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery are relatively consistent over time, at least in this tumor model. These results are encouraging for the use of large drug carriers, as they suggest that even large/late-stage tumors can benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter: ≃2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.

Pasternak O, Westin C-F, Dahlben B, Bouix S, Kubicki M. The Extent of Diffusion MRI Markers of Neuroinflammation and White Matter Deterioration in Chronic Schizophrenia. Schizophr Res. 2015;161 (1) :113-8.Abstract

In a previous study we have demonstrated, using a novel diffusion MRI analysis called free-water imaging, that the early stages of schizophrenia are more likely associated with a neuroinflammatory response and less so with a white matter deterioration or a demyelination process. What is not known is how neuroinflammation and white matter deterioration change along the progression of the disorder. In this study we apply the free-water measures on a population of 29 chronic schizophrenia subjects and compare them with 25 matching controls. Our aim was to compare the extent of free-water imaging abnormalities in chronic subjects with the ones previously obtained for subjects at their first psychotic episode. We find that chronic subjects showed a limited extent of abnormal increase in the volume of the extracellular space, suggesting a less extensive neuroinflammatory response relative to patients at the onset of schizophrenia. At the same time, the chronic schizophrenia subjects had greater extent of reduced fractional anisotropy compared to the previous study, suggesting increased white matter deterioration along the progression of the disease. Our findings substantiate the role of neuroinflammation in the earlier stages of the disorder, and the effect of neurodegeneration that is worsening in the chronic phase.

Gill RR, Zheng Y, Barlow JS, Jayender J, Girard EE, Hartigan PM, Chirieac LR, Belle-King CJ, Murray K, Sears C, et al. Image-guided Video Assisted Thoracoscopic Surgery (iVATS) - Phase I-II Clinical Trial. J Surg Oncol. 2015;112 (1) :18-25.Abstract

PURPOSE: To facilitate localization and resection of small lung nodules, we developed a prospective clinical trial ( number NCT01847209) for a novel surgical approach which combines placement of fiducials using intra-operative C-arm computed tomography (CT) guidance with standard thoracoscopic resection technique using image-guided video-assisted thoracoscopic surgery (iVATS). METHODS: Pretrial training was performed in a porcine model using C-arm CT and needle guidance software. Methodology and workflow for iVATS was developed, and a multi-modality team was trained. A prospective phase I-II clinical trial was initiated with the goal of recruiting eligible patients with small peripheral pulmonary nodules. Intra-operative C-arm CT scan was utilized for guidance of percutaneous marking with two T-bars (Kimberly-Clark, Roswell, GA) followed by VATS resection of the tumor. RESULTS: Twenty-five patients were enrolled; 23 underwent iVATS, one withdrew, and one lesion resolved. Size of lesions were: 0.6-1.8 cm, mean = 1.3 ± 0.38 cm.. All 23 patients underwent complete resection of their lesions. CT imaging of the resected specimens confirmed the removal of the T-bars and the nodule. Average and total procedure radiation dose was in the acceptable low range (median = 1501 μGy*m(2), range 665-16,326). There were no deaths, and all patients were discharged from the hospital (median length of stay = 4 days, range 2-12). Three patients had postoperative complications: one prolonged air-leak, one pneumonia, and one ileus. CONCLUSIONS: A successful and safe step-wise process has been established for iVATS, combining intra-operative C-arm CT scanning and thoracoscopic surgery in a hybrid operating room.

Guo J, Huang HJ, Wang X, Wang W, Ellison H, Thomen RP, Gelman AE, Woods JC. Imaging Mouse Lung Allograft Rejection with (1) H MRI. Magn Reson Med. 2015;73 (5) :1970-8.Abstract

PURPOSE: To demonstrate that longitudinal, noninvasive monitoring via MRI can characterize acute cellular rejection in mouse orthotopic lung allografts. METHODS: Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig versus anti-CD4/anti-CD8 treated groups. A two-dimensional multislice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at postoperative days 3, 7, and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. RESULTS: Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 posttransplantation (0.046→0.789; P < 0.05), despite large intermouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003; P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. CONCLUSION: Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment.

Olubiyi O, Ozdemir A, Incekara F, Tie Y, Dolati P, Hsu L, Santagata S, Chen Z, Rigolo L, Golby AJ. Intraoperative Magnetic Resonance Imaging in Intracranial Glioma Resection: A Single-Center, Retrospective Blinded Volumetric Study. World Neurosurg. 2015;84 (2) :528-36.Abstract

BACKGROUND: Intraoperative magnetic resonance imaging (IoMRI) was devised to overcome brain shifts during craniotomies. Yet, the acceptance of IoMRI is limited. OBJECTIVE: To evaluate impact of IoMRI on intracranial glioma resection outcome including overall patient survival. METHODS: A retrospective review of records was performed on a cohort of 164 consecutive patients who underwent resection surgery for newly diagnosed intracranial gliomas either with or without IoMRI technology performed by 2 neurosurgeons in our center. Patient follow-up was at least 5 years. Extent of resection (EOR) was calculated using pre- and postoperative contrast-enhanced and T2-weighted MR-images. Adjusted analysis was performed to compare gross total resection (GTR), EOR, permanent surgery-associated neurologic deficit, and overall survival between the 2 groups. RESULTS: Overall median EOR was 92.1%, and 97.45% with IoMRI use and 89.9% without IoMRI, with crude (unadjusted) P < 0.005. GTR was achieved in 49.3% of IoMRI cases, versus in only 21.4% of no-IoMRI cases, P < 0.001. GTR achieved was more with the use of IoMRI among gliomas located in both eloquent and noneloquent brain areas, P = 0.017 and <0.001, respectively. Permanent surgery-associated neurologic deficit was not (statistically) more significant with no-IoMRI, P = 0.284 (13.8% vs. 6.7%). In addition, the IoMRI group had better 5-year overall survival, P < 0.001. CONCLUSION: This study shows that the use of IoMRI was associated with greater rates of EOR and GTR, and better overall 5-year survival in both eloquent brain areas located and non-eloquent brain areas located gliomas, with no increased risk of neurologic complication.

Meyer A, Lasso A, Ungi T, Fichtinger G. Live Ultrasound Volume Reconstruction using Scout Scanning. Proc SPIE Int Soc Opt Eng. 2015;9415.Abstract

INTRODUCTION: Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. METHODS: Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. RESULTS: Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. DISCUSSION: Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

Balasubramanian M, Mulkern RV, Wells III WM, Sundaram P, Orbach DB. Magnetic Resonance Imaging of Ionic Currents in Solution: The Effect of Magnetohydrodynamic Flow. Magn Reson Med. 2015;74 (4) :1145-55.Abstract

PURPOSE: Reliably detecting MRI signals in the brain that are more tightly coupled to neural activity than blood-oxygen-level-dependent fMRI signals could not only prove valuable for basic scientific research but could also enhance clinical applications such as epilepsy presurgical mapping. This endeavor will likely benefit from an improved understanding of the behavior of ionic currents, the mediators of neural activity, in the presence of the strong magnetic fields that are typical of modern-day MRI scanners. THEORY: Of the various mechanisms that have been proposed to explain the behavior of ionic volume currents in a magnetic field, only one-magnetohydrodynamic flow-predicts a slow evolution of signals, on the order of a minute for normal saline in a typical MRI scanner. METHODS: This prediction was tested by scanning a volume-current phantom containing normal saline with gradient-echo-planar imaging at 3 T. RESULTS: Greater signal changes were observed in the phase of the images than in the magnitude, with the changes evolving on the order of a minute. CONCLUSION: These results provide experimental support for the MHD flow hypothesis. Furthermore, MHD-driven cerebrospinal fluid flow could provide a novel fMRI contrast mechanism.