Mastmeyer A, Pernelle G, Ma R, Barber L, Kapur T. Accurate Model-based Segmentation of Gynecologic Brachytherapy Catheter Collections in MRI-images. Med Image Anal. 2017;42 :173-88.Abstract
The gynecological cancer mortality rate, including cervical, ovarian, vaginal and vulvar cancers, is more than 20,000 annually in the US alone. In many countries, including the US, external-beam radiotherapy followed by high dose rate brachytherapy is the standard-of-care. The superior ability of MR to visualize soft tissue has led to an increase in its usage in planning and delivering brachytherapy treatment. A technical challenge associated with the use of MRI imaging for brachytherapy, in contrast to that of CT imaging, is the visualization of catheters that are used to place radiation sources into cancerous tissue. We describe here a precise, accurate method for achieving catheter segmentation and visualization. The algorithm, with the assistance of manually provided tip locations, performs segmentation using image-features, and is guided by a catheter-specific, estimated mechanical model. A final quality control step removes outliers or conflicting catheter trajectories. The mean Hausdorff error on a 54 patient, 760 catheter reference database was 1.49  mm; 51 of the outliers deviated more than two catheter widths (3.4  mm) from the gold standard, corresponding to catheter identification accuracy of 93% in a Syed-Neblett template. In a multi-user simulation experiment for evaluating RMS precision by simulating varying manually-provided superior tip positions, 3σ maximum errors were 2.44  mm. The average segmentation time for a single catheter was 3 s on a standard PC. The segmentation time, accuracy and precision, are promising indicators of the value of this method for clinical translation of MR-guidance in gynecologic brachytherapy and other catheter-based interventional procedures.
Todd N, Josephs O, Zeidman P, Flandin G, Moeller S, Weiskopf N. Functional Sensitivity of 2D Simultaneous Multi-Slice Echo-Planar Imaging: Effects of Acceleration on g-factor and Physiological Noise. Front Neurosci. 2017;11 :158.Abstract
Accelerated data acquisition with simultaneous multi-slice (SMS) imaging for functional MRI studies leads to interacting and opposing effects that influence the sensitivity to blood oxygen level-dependent (BOLD) signal changes. Image signal to noise ratio (SNR) is decreased with higher SMS acceleration factors and shorter repetition times (TR) due to g-factor noise penalties and saturation of longitudinal magnetization. However, the lower image SNR is counteracted by greater statistical power from more samples per unit time and a higher temporal Nyquist frequency that allows for better removal of spurious non-BOLD high frequency signal content. This study investigated the dependence of the BOLD sensitivity on these main driving factors and their interaction, and provides a framework for evaluating optimal acceleration of SMS-EPI sequences. functional magnetic resonance imaging (fMRI) data from a scenes/objects visualization task was acquired in 10 healthy volunteers at a standard neuroscience resolution of 3 mm on a 3T MRI scanner. SMS factors 1, 2, 4, and 8 were used, spanning TRs of 2800 ms to 350 ms. Two data processing methods were used to equalize the number of samples over the SMS factors. BOLD sensitivity was assessed using g-factors maps, temporal SNR (tSNR), and t-score metrics. tSNR results show a dependence on SMS factor that is highly non-uniform over the brain, with outcomes driven by g-factor noise amplification and the presence of high frequency noise. The t-score metrics also show a high degree of spatial dependence: the lower g-factor noise area of V1 shows significant improvements at higher SMS factors; the moderate-level g-factor noise area of the parahippocampal place area shows only a trend of improvement; and the high g-factor noise area of the ventral-medial pre-frontal cortex shows a trend of declining t-scores at higher SMS factors. This spatial variability suggests that the optimal SMS factor for fMRI studies is region dependent. For task fMRI studies done with similar parameters as were used here (3T scanner, 32-channel RF head coil, whole brain coverage at 3 mm isotropic resolution), we recommend SMS accelerations of 4x (conservative) to 8x (aggressive) for most studies and a more conservative acceleration of 2x for studies interested in anterior midline regions.
Zhang M, Wells WM, Golland P. Probabilistic Modeling of Anatomical Variability using a Low Dimensional Parameterization of Diffeomorphisms. Med Image Anal. 2017;41 :55-62.Abstract
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space.
Liao R, Ning L, Chen Z, Rigolo L, Gong S, Pasternak O, Golby AJ, Rathi Y, O'Donnell LJ, ckovic JV. Performance of Unscented Kalman Filter Tractography in Edema: Analysis of the Two-tensor Model. Neuroimage Clin. 2017;15 :819-31.Abstract
Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more sensitive than the traditional single-tensor streamline tractography. We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tractography in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several tractography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific fMRI activation that was reached by the tractography. We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model, would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional anisotropy threshold and including a free water model did not affect the UKF two-tensor tractography output appreciably in these two patient datasets. The most effective parameter for increasing tracking sensitivity was the generalized anisotropy (GA) threshold, which increased the length of tracked fibers when reduced to 0.075. In addition, the most effective seeding strategy was seeding in the whole brain or in a large region outside of the edema. Overall, the main contribution of this study is to provide insight into how UKF tractography can work, using a two-tensor model, to begin to address the challenge of fiber tract reconstruction in edematous regions near brain tumors.
Glazer DI, Mayo-Smith WW, Sainani NI, Sadow CA, Vangel MG, Tempany CM, Dunne RM. Interreader Agreement of Prostate Imaging Reporting and Data System Version 2 Using an In-Bore MRI-Guided Prostate Biopsy Cohort: A Single Institution's Initial Experience. AJR Am J Roentgenol. 2017;209 (3) :W145-51.Abstract
OBJECTIVE: The purpose of this study is to determine the interobserver agreement of the Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) for diagnosing prostate cancer using in-bore MRI-guided prostate biopsy as the reference standard. MATERIALS AND METHODS: Fifty-nine patients underwent in-bore MRI-guided prostate biopsy between January 21, 2010, and August 21, 2013, and underwent diagnostic multiparametric MRI 6 months or less before biopsy. A single index lesion per patient was selected after retrospective review of MR images. Three fellowship-trained abdominal radiologists (with 1-11 years' experience) blinded to clinical information interpreted all studies according to PI-RADSv2. Interobserver agreement was assessed using Cohen kappa statistics. RESULTS: Thirty-eight lesions were in the peripheral zone and 21 were in the transition zone. Cancer was diagnosed in 26 patients (44%). Overall PI-RADS scores were higher for all biopsy-positive lesions (mean ± SD, 3.9 ± 1.1) than for biopsy-negative lesions (3.1 ± 1.0; p < 0.0001) and for clinically significant lesions (4.2 ± 1.0) than for clinically insignificant lesions (3.1 ± 1.0; p < 0.0001). Overall suspicion score interobserver agreement was moderate (κ = 0.45). There was moderate interobserver agreement among overall PI-RADS scores in the peripheral zone (κ = 0.46) and fair agreement in the transition zone (κ = 0.36). CONCLUSION: PI-RADSv2 scores were higher in the biopsy-positive group. PI-RADSv2 showed moderate interobserver agreement among abdominal radiologists with no prior experience using the scoring system.
Fischer K, Ohori S, Meral FC, Uehara M, Giannini S, Ichimura T, Smith RN, Jolesz FA, Guleria I, Zhang Y, et al. Testing the Efficacy of Contrast-Enhanced Ultrasound in Detecting Transplant Rejection using a Murine Model of Heart Transplantation. Am J Transplant. 2017;17 (7) :1791-1801.Abstract
One of the key unmet needs to improve long-term outcomes of heart transplantation is to develop accurate, noninvasive, and practical diagnostic tools to detect transplant rejection. Early intragraft inflammation and endothelial cell injuries occur prior to advanced transplant rejection. We developed a novel diagnostic imaging platform to detect early declines in microvascular perfusion (MP) of cardiac transplants using contrast-enhanced ultrasonography (CEUS). The efficacy of CEUS in detecting transplant rejection was tested in a murine model of heart transplants, a standard preclinical model of solid organ transplant. As compared to the syngeneic groups, a progressive decline in MP was demonstrated in the allografts undergoing acute transplant rejection (40%, 64%, and 92% on days 4, 6, and 8 posttransplantation, respectively) and chronic rejection (33%, 33%, and 92% on days 5, 14, and 30 posttransplantation, respectively). Our perfusion studies showed restoration of MP following antirejection therapy, highlighting its potential to help monitor efficacy of antirejection therapy. Our data suggest that early endothelial cell injury and platelet aggregation contributed to the early MP decline observed in the allografts. High-resolution MP mapping may allow for noninvasive detection of heart transplant rejection. The data presented have the potential to help in the development of next-generation imaging approaches to diagnose transplant rejection.
Nishino M, Sacher AG, Gandhi L, Chen Z, Akbay E, Fedorov A, Westin CF, Hatabu H, Johnson BE, Hammerman P, et al. Co-clinical Quantitative Tumor Volume Imaging in ALK-rearranged NSCLC Treated with Crizotinib. Eur J Radiol. 2017;88 :15-20.Abstract
PURPOSE: To evaluate and compare the volumetric tumor burden changes during crizotinib therapy in mice and human cohorts with ALK-rearranged non-small-cell lung cancer (NSCLC). METHODS: Volumetric tumor burden was quantified on serial imaging studies in 8 bitransgenic mice with ALK-rearranged adenocarcinoma treated with crizotinib, and in 33 human subjects with ALK-rearranged NSCLC treated with crizotinib. The volumetric tumor burden changes and the time to maximal response were compared between mice and humans. RESULTS: The median tumor volume decrease (%) at the maximal response was -40.4% (range: -79.5%-+11.7%) in mice, and -72.9% (range: -100%-+72%) in humans (Wilcoxon p=0.03). The median time from the initiation of therapy to maximal response was 6 weeks in mice, and 15.7 weeks in humans. Overall volumetric response rate was 50% in mice and 97% in humans. Spider plots of tumor volume changes during therapy demonstrated durable responses in the human cohort, with a median time on therapy of 13.1 months. CONCLUSION: The present study described an initial attempt to evaluate quantitative tumor burden changes in co-clinical imaging studies of genomically-matched mice and human cohorts with ALK-rearranged NSCLC treated with crizotinib. Differences are noted in the degree of maximal volume response between the two cohorts in this well-established paradigm of targeted therapy, indicating a need for further studies to optimize co-clinical trial design and interpretation.
Essayed WI, Zhang F, Unadkat P, Cosgrove RG, Golby AJ, O'Donnell LJ. White Matter Tractography for Neurosurgical Planning: A Topography-based Review of the Current State of the Art. Neuroimage Clin. 2017;15 :659-72.Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Fedorov A, Vangel MG, Tempany CM, Fennessy FM. Multiparametric Magnetic Resonance Imaging of the Prostate: Repeatability of Volume and Apparent Diffusion Coefficient Quantification. Invest Radiol. 2017;52 (9) :538-46.Abstract
OBJECTIVES: The aim of this study was to evaluate the repeatability of a region of interest (ROI) volume and mean apparent diffusion coefficient (ADC) in standard-of-care 3 T multiparametric magnetic resonance imaging (mpMRI) of the prostate obtained with the use of endorectal coil. MATERIALS AND METHODS: This prospective study was Health Insurance Portability and Accountability Act compliant, with institutional review board approval and written informed consent. Men with confirmed or suspected treatment-naive prostate cancer scheduled for mpMRI were offered a repeat mpMRI within 2 weeks. Regions of interest corresponding to the whole prostate gland, the entire peripheral zone (PZ), normal PZ, and suspected tumor ROI (tROI) on axial T2-weighted, dynamic contrast-enhanced subtract, and ADC images were annotated and assessed using Prostate Imaging Reporting and Data System (PI-RADS) v2. Repeatability of the ROI volume for each of the analyzed image types and mean ROI ADC was summarized with repeatability coefficient (RC) and RC%. RESULTS: A total of 189 subjects were approached to participate in the study. Of 40 patients that gave initial agreement, 15 men underwent 2 mpMRI examinations and completed the study. Peripheral zone tROIs were identified in 11 subjects. Tumor ROI volume was less than 0.5 mL in 8 of 11 subjects. PI-RADS categories were identical between baseline-repeat studies in 11/15 subjects and differed by 1 point in 4/15. Peripheral zone tROI volume RC (RC%) was 233 mm (71%) on axial T2-weighted, 422 mm (112%) on ADC, and 488 mm (119%) on dynamic contrast-enhanced subtract. Apparent diffusion coefficient ROI mean RC (RC%) were 447 × 10 mm/s (42%) in PZ tROI and 471 × 10 mm/s (30%) in normal PZ. Significant difference in repeatability of the tROI volume across series was observed (P < 0.005). The mean ADC RC% was lower than volume RC% for tROI ADC (P < 0.05). CONCLUSIONS: PI-RADS v2 overall assessment was highly repeatable. Multiparametric magnetic resonance imaging sequences differ in volume measurement repeatability. The mean tROI ADC is more repeatable compared with tROI volume in ADC. Repeatability of prostate ADC is comparable with that in other abdominal organs.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Frank T, Krieger A, Leonard S, Patel NA, Tokuda J. ROS-IGTL-Bridge: An Open Network Interface for Image-Guided Therapy using the ROS Environment. Int J Comput Assist Radiol Surg. 2017;12 (8) :1451-60.Abstract
PURPOSE: With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. METHODS: A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. RESULTS: Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. CONCLUSION: The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.
Tax CMW, Westin C-F, Dela Haije T, Fuster A, Viergever MA, Calabrese E, Florack L, Leemans A. Quantifying the Brain's Sheet Structure with Normalized Convolution. Med Image Anal. 2017;39 :162-77.Abstract
The hypothesis that brain pathways form 2D sheet-like structures layered in 3D as "pages of a book" has been a topic of debate in the recent literature. This hypothesis was mainly supported by a qualitative evaluation of "path neighborhoods" reconstructed with diffusion MRI (dMRI) tractography. Notwithstanding the potentially important implications of the sheet structure hypothesis for our understanding of brain structure and development, it is still considered controversial by many for lack of quantitative analysis. A means to quantify sheet structure is therefore necessary to reliably investigate its occurrence in the brain. Previous work has proposed the Lie bracket as a quantitative indicator of sheet structure, which could be computed by reconstructing path neighborhoods from the peak orientations of dMRI orientation density functions. Robust estimation of the Lie bracket, however, is challenging due to high noise levels and missing peak orientations. We propose a novel method to estimate the Lie bracket that does not involve the reconstruction of path neighborhoods with tractography. This method requires the computation of derivatives of the fiber peak orientations, for which we adopt an approach called normalized convolution. With simulations and experimental data we show that the new approach is more robust with respect to missing peaks and noise. We also demonstrate that the method is able to quantify to what extent sheet structure is supported for dMRI data of different species, acquired with different scanners, diffusion weightings, dMRI sampling schemes, and spatial resolutions. The proposed method can also be used with directional data derived from other techniques than dMRI, which will facilitate further validation of the existence of sheet structure.
Balasubramanian M, Wells WM, Ives JR, Britz P, Mulkern RV, Orbach DB. RF Heating of Gold Cup and Conductive Plastic Electrodes during Simultaneous EEG and MRI. Neurodiagn J. 2017;57 (1) :69-83.Abstract
PURPOSE: To investigate the heating of EEG electrodes during magnetic resonance imaging (MRI) scans and to better understand the underlying physical mechanisms with a focus on the antenna effect. MATERIALS AND METHODS: Gold cup and conductive plastic electrodes were placed on small watermelons with fiberoptic probes used to measure electrode temperature changes during a variety of 1.5T and 3T MRI scans. A subset of these experiments was repeated on a healthy human volunteer. RESULTS: The differences between gold and plastic electrodes did not appear to be practically significant. For both electrode types, we observed heating below 4°C for straight wires whose lengths were multiples of ½ the radiofrequency (RF) wavelength and stronger heating (over 15°C) for wire lengths that were odd multiples of ¼ RF wavelength, consistent with the antenna effect. CONCLUSIONS: The antenna effect, which has received little attention so far in the context of EEG-MRI safety, can play as significant a role as the loop effect (from electromagnetic induction) in the heating of EEG electrodes, and therefore wire lengths that are odd multiples of ¼ RF wavelength should be avoided. These results have important implications for the design of EEG electrodes and MRI studies as they help to minimize the risk to patients undergoing MRI with EEG electrodes in place.
George E, Liacouras P, Lee TC, Mitsouras D. 3D-Printed Patient-Specific Models for CT-and MRI-Guided Procedure Planning. AJNR Am J Neuroradiol. 2017;38 (7) :E46-7.
Mallory MA, Sagara Y, Aydogan F, Desantis S, Jayender J, Caragacianu D, Gombos E, Vosburgh KG, Jolesz FA, Golshan M. Feasibility of Intraoperative Breast MRI and the Role of Prone Versus Supine Positioning in Surgical Planning for Breast-Conserving Surgery. Breast J. 2017;23 (6) :713-7.Abstract
We assessed the feasibility of supine intraoperative MRI (iMRI) during breast-conserving surgery (BCS), enrolling 15 patients in our phase I trial between 2012 and 2014. Patients received diagnostic prone MRI, BCS, pre-excisional supine iMRI, and postexcisional supine iMRI. Feasibility was assessed based on safety, sterility, duration, and image-quality. Twelve patients completed the study; mean duration = 114 minutes; all images were adequate; no complications, safety, or sterility issues were encountered. Substantial tumor-associated changes occurred (mean displacement = 67.7 mm, prone-supine metric, n = 7). We have demonstrated iMRI feasibility for BCS and have identified potential limitations of prone breast MRI that may impact surgical planning.
Wong SM, Freedman RA, Sagara Y, Aydogan F, Barry WT, Golshan M. Growing Use of Contralateral Prophylactic Mastectomy Despite no Improvement in Long-term Survival for Invasive Breast Cancer. Ann Surg. 2017;265 (3) :581-9.Abstract
OBJECTIVE: To update and examine national temporal trends in contralateral prophylactic mastectomy (CPM) and determine whether survival differed for invasive breast cancer patients based on hormone receptor (HR) status and age. METHODS: We identified women diagnosed with unilateral stage I to III breast cancer between 1998 and 2012 within the Surveillance, Epidemiology, and End Results registry. We compared characteristics and temporal trends between patients undergoing breast-conserving surgery, unilateral mastectomy, and CPM. We then performed Cox proportional-hazards regression to examine breast cancer-specific survival (BCSS) and overall survival (OS) in women diagnosed between 1998 and 2007, who underwent breast-conserving surgery with radiation (breast-conserving therapy), unilateral mastectomy, or CPM, with subsequent subgroup analysis stratifying by age and HR status. RESULTS: Of 496,488 women diagnosed with unilateral invasive breast cancer, 59.6% underwent breast-conserving surgery, 33.4% underwent unilateral mastectomy, and 7.0% underwent CPM. Overall, the proportion of women undergoing CPM increased from 3.9% in 2002 to 12.7% in 2012 (P < 0.001). Reconstructive surgery was performed in 48.3% of CPM patients compared with only 16.0% of unilateral mastectomy patients, with rates of reconstruction with CPM rising from 35.3% in 2002 to 55.4% in 2012 (P < 0.001). When compared with breast-conserving therapy, we found no significant improvement in BCSS or OS for women undergoing CPM (BCSS: HR 1.08, 95% confidence interval 1.01-1.16; OS: HR 1.08, 95% confidence interval 1.03-1.14), regardless of HR status or age. CONCLUSIONS: The use of CPM more than tripled during the study period despite evidence suggesting no survival benefit over breast conservation. Further examination on how to optimally counsel women about surgical options is warranted.
Chou S-HS, Gombos EC, Chikarmane SA, Giess CS, Jayender J. Computer-Aided Heterogeneity Analysis in Breast MR Imaging Assessment of Ductal Carcinoma In Situ: Correlating Histologic Grade and Receptor Status. J Magn Reson Imaging. 2017;46 (6) :1748-59.Abstract

PURPOSE: To identify breast MR imaging biomarkers to predict histologic grade and receptor status of ductal carcinoma in situ (DCIS). MATERIALS AND METHODS: Informed consent was waived in this Health Insurance Portability and Accountability Act-compliant Institutional Review Board-approved study. Case inclusion was conducted from 7332 consecutive breast MR studies from January 1, 2009, to December 31, 2012. Excluding studies with benign diagnoses, studies without visible abnormal enhancement, and pathology containing invasive disease yielded 55 MR-imaged pathology-proven DCIS seen on 54 studies. Twenty-eight studies (52%) were performed at 1.5 Tesla (T); 26 (48%) at 3T. Regions-of-interest representing DCIS were segmented for precontrast, first and fourth postcontrast, and subtracted first and fourth postcontrast images on the open-source three-dimensional (3D) Slicer software. Fifty-seven metrics of each DCIS were obtained, including distribution statistics, shape, morphology, Renyi dimensions, geometrical measure, and texture, using the 3D Slicer HeterogeneityCAD module. Statistical correlation of heterogeneity metrics with DCIS grade and receptor status was performed using univariate Mann-Whitney test. RESULTS: Twenty-four of the 55 DCIS (44%) were high nuclear grade (HNG); 44 (80%) were estrogen receptor (ER) positive. Human epidermal growth factor receptor-2 (HER2) was amplified in 10/55 (18%), nonamplified in 34/55 (62%), unknown/equivocal in 8/55 (15%). Surface area-to-volume ratio showed significant difference (P < 0.05) between HNG and non-HNG DCIS. No metric differentiated ER status (0.113 < p ≤ 1.000). Seventeen metrics showed significant differences between HER2-positive and HER2-negative DCIS (0.016 < P < 0.050). CONCLUSION: Quantitative heterogeneity analysis of DCIS suggests the presence of MR imaging biomarkers in classifying DCIS grade and HER2 status. Validation with larger samples and prospective studies is needed to translate these results into clinical applications. LEVEL OF EVIDENCE: 3 J. Magn. Reson. Imaging 2017.

Halle M, Demeusy V, Kikinis R. The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases. Front Neuroinform. 2017;11 :22.Abstract
The Open Anatomy Browser (OABrowser) is an open source, web-based, zero-installation anatomy atlas viewer based on current web browser technologies and evolving anatomy atlas interoperability standards. OABrowser displays three-dimensional anatomical models, image cross-sections of labeled structures and source radiological imaging, and a text-based hierarchy of structures. The viewer includes novel collaborative tools: users can save bookmarks of atlas views for later access and exchange those bookmarks with other users, and dynamic shared views allow groups of users can participate in a collaborative interactive atlas viewing session. We have published several anatomy atlases (an MRI-derived brain atlas and atlases of other parts of the anatomy) to demonstrate OABrowser's functionality. The atlas source data, processing tools, and the source for OABrowser are freely available through GitHub and are distributed under a liberal open source license.
Huang KT, Ludy S, Calligaris D, Dunn IF, Laws E, Santagata S, Agar NYR. Rapid Mass Spectrometry Imaging to Assess the Biochemical Profile of Pituitary Tissue for Potential Intraoperative Usage. Adv Cancer Res. 2017;134 :257-82.Abstract

Pituitary adenomas are relatively common intracranial neoplasms that are frequently treated with surgical resection. Rapid visualization of pituitary tissue remains a challenge as current techniques either produce little to no information on hormone-secreting function or are too slow to practically aid in intraoperative or even perioperative decision-making. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) represents a powerful method by which molecular maps of tissue samples can be created, yielding a two-dimensional representation of the expression patterns of small molecules and proteins from biologic samples. In this chapter, we review the use of MALDI MSI, its application to the characterization of the pituitary gland, and its potential applications for guiding the management of pituitary adenomas.

Kamran SC, Manuel MM, Cho LP, Damato AL, Schmidt EJ, Tempany C, Cormack RA, Viswanathan AN. Comparison of Outcomes for MR-guided versus CT-guided High-dose-rate Interstitial Brachytherapy in Women with Locally Advanced Carcinoma of the Cervix. Gynecol Oncol. 2017;145 (2) :284-90.Abstract

OBJECTIVE: The purpose was to compare local control (LC), overall survival (OS) and dose to the organs at risk (OAR) in women with locally advanced cervical cancer treated with MR-guided versus CT-guided interstitial brachytherapy (BT). METHODS: 56 patients (29 MR, 27 CT) were treated with high-dose-rate (HDR) interstitial BT between 2005-2015. The MR patients had been prospectively enrolled on a Phase II clinical trial. Data were analyzed using Kaplan-Meier (K-M) and Cox proportional hazards statistical modeling in JMP® & R®. RESULTS: Median follow-up time was 19.7months (MR group) and 18.4months (CT group). There were no statistically significant differences in patient age at diagnosis, histology, percent with tumor size >4cm, grade, FIGO stage or lymph node involvement between the groups. Patients in the MR group had more lymphovascular involvement compared to patients in the CT group (p<0.01). When evaluating plans generated, there were no statistically significant differences in median cumulative dose to the high-risk clinical target volume or the OAR. 2-year K-M LC rates for MR-based and CT-based treatments were 96% and 87%, respectively (log-rank p=0.65). At 2years, OS was significantly better in the MR-guided cohort (84% vs. 56%, p=0.036). On multivariate analysis, squamous histology was associated with longer OS (HR 0.23, 95% CI 0.07-0.72) in a model with MR BT (HR 0.35, 95% CI 0.08-1.18). There was no difference in toxicities between CT and MR BT. CONCLUSION: In this population of locally advanced cervical-cancer patients, MR-guided HDR BT resulted in estimated 96% 2-year local control and excellent survival and toxicity rates.

Velez E, Fedorov A, Tuncali K, Olubiyi O, Allard CB, Kibel AS, Tempany CM. Pathologic Correlation of Transperineal In-Bore 3-Tesla Magnetic Resonance Imaging-Guided Prostate Biopsy Samples with Radical Prostatectomy Specimen. Abdom Radiol (NY). 2017;42 (8) :2154-9.Abstract

PURPOSE: To determine the accuracy of in-bore transperineal 3-Tesla (T) magnetic resonance (MR) imaging-guided prostate biopsies for predicting final Gleason grades in patients who subsequently underwent radical prostatectomy (RP). METHODS: A retrospective review of men who underwent transperineal MR imaging-guided prostate biopsy (tpMRGB) with subsequent radical prostatectomy within 1 year was conducted from 2010 to 2015. All patients underwent a baseline 3-T multiparametric MRI (mpMRI) with endorectal coil and were selected for biopsy based on MR findings of a suspicious prostate lesion and high degree of clinical suspicion for cancer. Spearman correlation was performed to assess concordance between tpMRGB and final RP pathology among patients with and without previous transrectal ultrasound (TRUS)-guided biopsies. RESULTS: A total of 24 men met all eligibility requirements, with a median age of 65 years (interquartile range [IQR] 11.7). The median time from biopsy to RP was 85 days (IQR 50.5). Final pathology revealed Gleason 3 + 4 = 7 in 12 patients, 4 + 3 = 7 in 10 patients, and 4 + 4 = 8 in 2 patients. A strong correlation (ρ: +0.75, p < 0.001) between tpMRGB and RP results was observed, with Gleason scores concordant in 17 cases (71%). 16 of the 24 patients underwent prior TRUS biopsies. Subsequent tpMRGB revealed Gleason upgrading in 88% of cases, which was concordant with RP Gleason scores in 69% of cases (ρ: +0.75, p < 0.001). CONCLUSION: Final Gleason scores diagnosed by tpMRGB at 3-T correlate strongly with final RP surgical pathology. This may facilitate prostate cancer diagnosis, particularly in patients with negative or low-grade TRUS biopsy results in whom clinically significant cancer is suspected or detected on mpMRI.