Publications

2017
Norton I, Essayed WI, Zhang F, Pujol S, Yarmarkovich A, Golby AJ, Kindlmann G, Wasserman D, Estepar RSJ, Rathi Y, et al. SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. Cancer Res. 2017;77 (21) :e101-e103.Abstract
Diffusion MRI (dMRI) is the only noninvasive method for mapping white matter connections in the brain. We describe SlicerDMRI, a software suite that enables visualization and analysis of dMRI for neuroscientific studies and patient-specific anatomic assessment. SlicerDMRI has been successfully applied in multiple studies of the human brain in health and disease, and here, we especially focus on its cancer research applications. As an extension module of the 3D Slicer medical image computing platform, the SlicerDMRI suite enables dMRI analysis in a clinically relevant multimodal imaging workflow. Core SlicerDMRI functionality includes diffusion tensor estimation, white matter tractography with single and multi-fiber models, and dMRI quantification. SlicerDMRI supports clinical DICOM and research file formats, is open-source and cross-platform, and can be installed as an extension to 3D Slicer (www.slicer.org). More information, videos, tutorials, and sample data are available at dmri.slicer.org Cancer Res; 77(21); e101-3. ©2017 AACR.
Luo M, Frisken SF, Weis JA, Clements LW, Unadkat P, Thompson RC, Golby AJ, Miga MI. Retrospective Study Comparing Model-Based Deformation Correction to Intraoperative Magnetic Resonance Imaging for Image-Guided Neurosurgery. J Med Imaging (Bellingham). 2017;4 (3) :035003.Abstract
Brain shift during tumor resection compromises the spatial validity of registered preoperative imaging data that is critical to image-guided procedures. One current clinical solution to mitigate the effects is to reimage using intraoperative magnetic resonance (iMR) imaging. Although iMR has demonstrated benefits in accounting for preoperative-to-intraoperative tissue changes, its cost and encumbrance have limited its widespread adoption. While iMR will likely continue to be employed for challenging cases, a cost-effective model-based brain shift compensation strategy is desirable as a complementary technology for standard resections. We performed a retrospective study of [Formula: see text] tumor resection cases, comparing iMR measurements with intraoperative brain shift compensation predicted by our model-based strategy, driven by sparse intraoperative cortical surface data. For quantitative assessment, homologous subsurface targets near the tumors were selected on preoperative MR and iMR images. Once rigidly registered, intraoperative shift measurements were determined and subsequently compared to model-predicted counterparts as estimated by the brain shift correction framework. When considering moderate and high shift ([Formula: see text], [Formula: see text] measurements per case), the alignment error due to brain shift reduced from [Formula: see text] to [Formula: see text], representing [Formula: see text] correction. These first steps toward validation are promising for model-based strategies.
Niethammer M, Pohl KM, Janoos F, Wells WM. Active Mean Fields for Probabilistic Image Segmentation: Connections with Chan-Vese and Rudin-Osher-Fatemi Models. SIAM J. Imaging Sci. 2017;10 (3) :1069–1103.Abstract
Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating this uncertainty is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. However, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the active mean fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model, in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the tt icgbench dataset.
Ghafoorian M, Mehrtash A, Kapur T, Karssemeijer N, Marchiori E, Pesteie M, Guttmann CRG, de Leeuw F-E, Tempany CMC, van Ginneken B, et al. Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation. Int Conf Med Image Comput Comput Assist Interv. 2017;20 (Pt3) :516-24.Abstract
Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis and treatment. However, variations in MRI acquisition protocols result in different appearances of normal and diseased tissue in the images. Convolutional neural networks (CNNs), which have shown to be successful in many medical image analysis tasks, are typically sensitive to the variations in imaging protocols. Therefore, in many cases, networks trained on data acquired with one MRI protocol, do not perform satisfactorily on data acquired with different protocols. This limits the use of models trained with large annotated legacy datasets on a new dataset with a different domain which is often a recurring situation in clinical settings. In this study, we aim to answer the following central questions regarding domain adaptation in medical image analysis: Given a fitted legacy model, (1) How much data from the new domain is required for a decent adaptation of the original network?; and, (2) What portion of the pre-trained model parameters should be retrained given a certain number of the new domain training samples? To address these questions, we conducted extensive experiments in white matter hyperintensity segmentation task. We trained a CNN on legacy MR images of brain and evaluated the performance of the domain-adapted network on the same task with images from a different domain. We then compared the performance of the model to the surrogate scenarios where either the same trained network is used or a new network is trained from scratch on the new dataset. The domain-adapted network tuned only by two training examples achieved a Dice score of 0.63 substantially outperforming a similar network trained on the same set of examples from scratch.
Ghafoorian MICCAI 2017
Glazer DI, Tatli S, Shyn PB, Vangel MG, Tuncali K, Silverman SG. Percutaneous Image-Guided Cryoablation of Hepatic Tumors: Single-Center Experience with Intermediate to Long-Term Outcomes. AJR Am J Roentgenol. 2017;209 (6) :1381-9.Abstract
OBJECTIVE: The purpose of this article is to report our intermediate to long-term outcomes with image-guided percutaneous hepatic tumor cryoablation and to evaluate its technical success, technique efficacy, local tumor progression, and adverse event rate. MATERIALS AND METHODS: Between 1998 and 2014, 299 hepatic tumors (243 metastases and 56 primary tumors; mean diameter, 2.5 cm; median diameter, 2.2 cm; range, 0.3-7.8 cm) in 186 patients (95 women; mean age, 60.9 years; range, 29-88 years) underwent cryoablation during 236 procedures using CT (n = 126), MRI (n = 100), or PET/CT (n = 10) guidance. Technical success, technique efficacy at 3 months, local tumor progression (mean follow-up, 2.5 years; range, 2 months to 14.6 years), and adverse event rates were calculated. RESULTS: The technical success rate was 94.6% (279/295). The technique efficacy rate was 89.5% (231/258) and was greater for tumors smaller than 4 cm (93.4%; 213/228) than for larger tumors (60.0%; 18/30) (p < 0.0001). Local tumor progression occurred in 23.3% (60/258) of tumors and was significantly more common after the treatment of tumors 4 cm or larger (63.3%; 19/30) compared with smaller tumors (18.0%; 41/228) (p < 0.0001). Adverse events followed 33.8% (80/236) of procedures and were grade 3-5 in 10.6% (25/236) of cases. Grade 3 or greater adverse events more commonly followed the treatment of larger tumors (19.5%; 8/41) compared with smaller tumors (8.7%; 17/195) (p = 0.04). CONCLUSION: Image-guided percutaneous cryoablation of hepatic tumors is efficacious; however, tumors smaller than 4 cm are more likely to be treated successfully and without an adverse event.
Mastmeyer A, Pernelle G, Ma R, Barber L, Kapur T. Accurate Model-based Segmentation of Gynecologic Brachytherapy Catheter Collections in MRI-images. Med Image Anal. 2017;42 :173-88.Abstract
The gynecological cancer mortality rate, including cervical, ovarian, vaginal and vulvar cancers, is more than 20,000 annually in the US alone. In many countries, including the US, external-beam radiotherapy followed by high dose rate brachytherapy is the standard-of-care. The superior ability of MR to visualize soft tissue has led to an increase in its usage in planning and delivering brachytherapy treatment. A technical challenge associated with the use of MRI imaging for brachytherapy, in contrast to that of CT imaging, is the visualization of catheters that are used to place radiation sources into cancerous tissue. We describe here a precise, accurate method for achieving catheter segmentation and visualization. The algorithm, with the assistance of manually provided tip locations, performs segmentation using image-features, and is guided by a catheter-specific, estimated mechanical model. A final quality control step removes outliers or conflicting catheter trajectories. The mean Hausdorff error on a 54 patient, 760 catheter reference database was 1.49  mm; 51 of the outliers deviated more than two catheter widths (3.4  mm) from the gold standard, corresponding to catheter identification accuracy of 93% in a Syed-Neblett template. In a multi-user simulation experiment for evaluating RMS precision by simulating varying manually-provided superior tip positions, 3σ maximum errors were 2.44  mm. The average segmentation time for a single catheter was 3 s on a standard PC. The segmentation time, accuracy and precision, are promising indicators of the value of this method for clinical translation of MR-guidance in gynecologic brachytherapy and other catheter-based interventional procedures.
Todd N, Josephs O, Zeidman P, Flandin G, Moeller S, Weiskopf N. Functional Sensitivity of 2D Simultaneous Multi-Slice Echo-Planar Imaging: Effects of Acceleration on g-factor and Physiological Noise. Front Neurosci. 2017;11 :158.Abstract
Accelerated data acquisition with simultaneous multi-slice (SMS) imaging for functional MRI studies leads to interacting and opposing effects that influence the sensitivity to blood oxygen level-dependent (BOLD) signal changes. Image signal to noise ratio (SNR) is decreased with higher SMS acceleration factors and shorter repetition times (TR) due to g-factor noise penalties and saturation of longitudinal magnetization. However, the lower image SNR is counteracted by greater statistical power from more samples per unit time and a higher temporal Nyquist frequency that allows for better removal of spurious non-BOLD high frequency signal content. This study investigated the dependence of the BOLD sensitivity on these main driving factors and their interaction, and provides a framework for evaluating optimal acceleration of SMS-EPI sequences. functional magnetic resonance imaging (fMRI) data from a scenes/objects visualization task was acquired in 10 healthy volunteers at a standard neuroscience resolution of 3 mm on a 3T MRI scanner. SMS factors 1, 2, 4, and 8 were used, spanning TRs of 2800 ms to 350 ms. Two data processing methods were used to equalize the number of samples over the SMS factors. BOLD sensitivity was assessed using g-factors maps, temporal SNR (tSNR), and t-score metrics. tSNR results show a dependence on SMS factor that is highly non-uniform over the brain, with outcomes driven by g-factor noise amplification and the presence of high frequency noise. The t-score metrics also show a high degree of spatial dependence: the lower g-factor noise area of V1 shows significant improvements at higher SMS factors; the moderate-level g-factor noise area of the parahippocampal place area shows only a trend of improvement; and the high g-factor noise area of the ventral-medial pre-frontal cortex shows a trend of declining t-scores at higher SMS factors. This spatial variability suggests that the optimal SMS factor for fMRI studies is region dependent. For task fMRI studies done with similar parameters as were used here (3T scanner, 32-channel RF head coil, whole brain coverage at 3 mm isotropic resolution), we recommend SMS accelerations of 4x (conservative) to 8x (aggressive) for most studies and a more conservative acceleration of 2x for studies interested in anterior midline regions.
Zhang M, Wells WM, Golland P. Probabilistic Modeling of Anatomical Variability using a Low Dimensional Parameterization of Diffeomorphisms. Med Image Anal. 2017;41 :55-62.Abstract
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space.
Liao R, Ning L, Chen Z, Rigolo L, Gong S, Pasternak O, Golby AJ, Rathi Y, O'Donnell LJ, ckovic JV. Performance of Unscented Kalman Filter Tractography in Edema: Analysis of the Two-tensor Model. Neuroimage Clin. 2017;15 :819-31.Abstract
Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more sensitive than the traditional single-tensor streamline tractography. We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tractography in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several tractography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific fMRI activation that was reached by the tractography. We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model, would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional anisotropy threshold and including a free water model did not affect the UKF two-tensor tractography output appreciably in these two patient datasets. The most effective parameter for increasing tracking sensitivity was the generalized anisotropy (GA) threshold, which increased the length of tracked fibers when reduced to 0.075. In addition, the most effective seeding strategy was seeding in the whole brain or in a large region outside of the edema. Overall, the main contribution of this study is to provide insight into how UKF tractography can work, using a two-tensor model, to begin to address the challenge of fiber tract reconstruction in edematous regions near brain tumors.
Glazer DI, Mayo-Smith WW, Sainani NI, Sadow CA, Vangel MG, Tempany CM, Dunne RM. Interreader Agreement of Prostate Imaging Reporting and Data System Version 2 Using an In-Bore MRI-Guided Prostate Biopsy Cohort: A Single Institution's Initial Experience. AJR Am J Roentgenol. 2017;209 (3) :W145-51.Abstract
OBJECTIVE: The purpose of this study is to determine the interobserver agreement of the Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) for diagnosing prostate cancer using in-bore MRI-guided prostate biopsy as the reference standard. MATERIALS AND METHODS: Fifty-nine patients underwent in-bore MRI-guided prostate biopsy between January 21, 2010, and August 21, 2013, and underwent diagnostic multiparametric MRI 6 months or less before biopsy. A single index lesion per patient was selected after retrospective review of MR images. Three fellowship-trained abdominal radiologists (with 1-11 years' experience) blinded to clinical information interpreted all studies according to PI-RADSv2. Interobserver agreement was assessed using Cohen kappa statistics. RESULTS: Thirty-eight lesions were in the peripheral zone and 21 were in the transition zone. Cancer was diagnosed in 26 patients (44%). Overall PI-RADS scores were higher for all biopsy-positive lesions (mean ± SD, 3.9 ± 1.1) than for biopsy-negative lesions (3.1 ± 1.0; p < 0.0001) and for clinically significant lesions (4.2 ± 1.0) than for clinically insignificant lesions (3.1 ± 1.0; p < 0.0001). Overall suspicion score interobserver agreement was moderate (κ = 0.45). There was moderate interobserver agreement among overall PI-RADS scores in the peripheral zone (κ = 0.46) and fair agreement in the transition zone (κ = 0.36). CONCLUSION: PI-RADSv2 scores were higher in the biopsy-positive group. PI-RADSv2 showed moderate interobserver agreement among abdominal radiologists with no prior experience using the scoring system.
Fischer K, Ohori S, Meral FC, Uehara M, Giannini S, Ichimura T, Smith RN, Jolesz FA, Guleria I, Zhang Y, et al. Testing the Efficacy of Contrast-Enhanced Ultrasound in Detecting Transplant Rejection using a Murine Model of Heart Transplantation. Am J Transplant. 2017;17 (7) :1791-1801.Abstract
One of the key unmet needs to improve long-term outcomes of heart transplantation is to develop accurate, noninvasive, and practical diagnostic tools to detect transplant rejection. Early intragraft inflammation and endothelial cell injuries occur prior to advanced transplant rejection. We developed a novel diagnostic imaging platform to detect early declines in microvascular perfusion (MP) of cardiac transplants using contrast-enhanced ultrasonography (CEUS). The efficacy of CEUS in detecting transplant rejection was tested in a murine model of heart transplants, a standard preclinical model of solid organ transplant. As compared to the syngeneic groups, a progressive decline in MP was demonstrated in the allografts undergoing acute transplant rejection (40%, 64%, and 92% on days 4, 6, and 8 posttransplantation, respectively) and chronic rejection (33%, 33%, and 92% on days 5, 14, and 30 posttransplantation, respectively). Our perfusion studies showed restoration of MP following antirejection therapy, highlighting its potential to help monitor efficacy of antirejection therapy. Our data suggest that early endothelial cell injury and platelet aggregation contributed to the early MP decline observed in the allografts. High-resolution MP mapping may allow for noninvasive detection of heart transplant rejection. The data presented have the potential to help in the development of next-generation imaging approaches to diagnose transplant rejection.
Nishino M, Sacher AG, Gandhi L, Chen Z, Akbay E, Fedorov A, Westin CF, Hatabu H, Johnson BE, Hammerman P, et al. Co-clinical Quantitative Tumor Volume Imaging in ALK-rearranged NSCLC Treated with Crizotinib. Eur J Radiol. 2017;88 :15-20.Abstract
PURPOSE: To evaluate and compare the volumetric tumor burden changes during crizotinib therapy in mice and human cohorts with ALK-rearranged non-small-cell lung cancer (NSCLC). METHODS: Volumetric tumor burden was quantified on serial imaging studies in 8 bitransgenic mice with ALK-rearranged adenocarcinoma treated with crizotinib, and in 33 human subjects with ALK-rearranged NSCLC treated with crizotinib. The volumetric tumor burden changes and the time to maximal response were compared between mice and humans. RESULTS: The median tumor volume decrease (%) at the maximal response was -40.4% (range: -79.5%-+11.7%) in mice, and -72.9% (range: -100%-+72%) in humans (Wilcoxon p=0.03). The median time from the initiation of therapy to maximal response was 6 weeks in mice, and 15.7 weeks in humans. Overall volumetric response rate was 50% in mice and 97% in humans. Spider plots of tumor volume changes during therapy demonstrated durable responses in the human cohort, with a median time on therapy of 13.1 months. CONCLUSION: The present study described an initial attempt to evaluate quantitative tumor burden changes in co-clinical imaging studies of genomically-matched mice and human cohorts with ALK-rearranged NSCLC treated with crizotinib. Differences are noted in the degree of maximal volume response between the two cohorts in this well-established paradigm of targeted therapy, indicating a need for further studies to optimize co-clinical trial design and interpretation.
Essayed WI, Zhang F, Unadkat P, Cosgrove RG, Golby AJ, O'Donnell LJ. White Matter Tractography for Neurosurgical Planning: A Topography-based Review of the Current State of the Art. Neuroimage Clin. 2017;15 :659-72.Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Fedorov A, Vangel MG, Tempany CM, Fennessy FM. Multiparametric Magnetic Resonance Imaging of the Prostate: Repeatability of Volume and Apparent Diffusion Coefficient Quantification. Invest Radiol. 2017;52 (9) :538-46.Abstract
OBJECTIVES: The aim of this study was to evaluate the repeatability of a region of interest (ROI) volume and mean apparent diffusion coefficient (ADC) in standard-of-care 3 T multiparametric magnetic resonance imaging (mpMRI) of the prostate obtained with the use of endorectal coil. MATERIALS AND METHODS: This prospective study was Health Insurance Portability and Accountability Act compliant, with institutional review board approval and written informed consent. Men with confirmed or suspected treatment-naive prostate cancer scheduled for mpMRI were offered a repeat mpMRI within 2 weeks. Regions of interest corresponding to the whole prostate gland, the entire peripheral zone (PZ), normal PZ, and suspected tumor ROI (tROI) on axial T2-weighted, dynamic contrast-enhanced subtract, and ADC images were annotated and assessed using Prostate Imaging Reporting and Data System (PI-RADS) v2. Repeatability of the ROI volume for each of the analyzed image types and mean ROI ADC was summarized with repeatability coefficient (RC) and RC%. RESULTS: A total of 189 subjects were approached to participate in the study. Of 40 patients that gave initial agreement, 15 men underwent 2 mpMRI examinations and completed the study. Peripheral zone tROIs were identified in 11 subjects. Tumor ROI volume was less than 0.5 mL in 8 of 11 subjects. PI-RADS categories were identical between baseline-repeat studies in 11/15 subjects and differed by 1 point in 4/15. Peripheral zone tROI volume RC (RC%) was 233 mm (71%) on axial T2-weighted, 422 mm (112%) on ADC, and 488 mm (119%) on dynamic contrast-enhanced subtract. Apparent diffusion coefficient ROI mean RC (RC%) were 447 × 10 mm/s (42%) in PZ tROI and 471 × 10 mm/s (30%) in normal PZ. Significant difference in repeatability of the tROI volume across series was observed (P < 0.005). The mean ADC RC% was lower than volume RC% for tROI ADC (P < 0.05). CONCLUSIONS: PI-RADS v2 overall assessment was highly repeatable. Multiparametric magnetic resonance imaging sequences differ in volume measurement repeatability. The mean tROI ADC is more repeatable compared with tROI volume in ADC. Repeatability of prostate ADC is comparable with that in other abdominal organs.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Frank T, Krieger A, Leonard S, Patel NA, Tokuda J. ROS-IGTL-Bridge: An Open Network Interface for Image-Guided Therapy using the ROS Environment. Int J Comput Assist Radiol Surg. 2017;12 (8) :1451-60.Abstract
PURPOSE: With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. METHODS: A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. RESULTS: Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. CONCLUSION: The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.
Tax CMW, Westin C-F, Dela Haije T, Fuster A, Viergever MA, Calabrese E, Florack L, Leemans A. Quantifying the Brain's Sheet Structure with Normalized Convolution. Med Image Anal. 2017;39 :162-77.Abstract
The hypothesis that brain pathways form 2D sheet-like structures layered in 3D as "pages of a book" has been a topic of debate in the recent literature. This hypothesis was mainly supported by a qualitative evaluation of "path neighborhoods" reconstructed with diffusion MRI (dMRI) tractography. Notwithstanding the potentially important implications of the sheet structure hypothesis for our understanding of brain structure and development, it is still considered controversial by many for lack of quantitative analysis. A means to quantify sheet structure is therefore necessary to reliably investigate its occurrence in the brain. Previous work has proposed the Lie bracket as a quantitative indicator of sheet structure, which could be computed by reconstructing path neighborhoods from the peak orientations of dMRI orientation density functions. Robust estimation of the Lie bracket, however, is challenging due to high noise levels and missing peak orientations. We propose a novel method to estimate the Lie bracket that does not involve the reconstruction of path neighborhoods with tractography. This method requires the computation of derivatives of the fiber peak orientations, for which we adopt an approach called normalized convolution. With simulations and experimental data we show that the new approach is more robust with respect to missing peaks and noise. We also demonstrate that the method is able to quantify to what extent sheet structure is supported for dMRI data of different species, acquired with different scanners, diffusion weightings, dMRI sampling schemes, and spatial resolutions. The proposed method can also be used with directional data derived from other techniques than dMRI, which will facilitate further validation of the existence of sheet structure.
Balasubramanian M, Wells WM, Ives JR, Britz P, Mulkern RV, Orbach DB. RF Heating of Gold Cup and Conductive Plastic Electrodes during Simultaneous EEG and MRI. Neurodiagn J. 2017;57 (1) :69-83.Abstract
PURPOSE: To investigate the heating of EEG electrodes during magnetic resonance imaging (MRI) scans and to better understand the underlying physical mechanisms with a focus on the antenna effect. MATERIALS AND METHODS: Gold cup and conductive plastic electrodes were placed on small watermelons with fiberoptic probes used to measure electrode temperature changes during a variety of 1.5T and 3T MRI scans. A subset of these experiments was repeated on a healthy human volunteer. RESULTS: The differences between gold and plastic electrodes did not appear to be practically significant. For both electrode types, we observed heating below 4°C for straight wires whose lengths were multiples of ½ the radiofrequency (RF) wavelength and stronger heating (over 15°C) for wire lengths that were odd multiples of ¼ RF wavelength, consistent with the antenna effect. CONCLUSIONS: The antenna effect, which has received little attention so far in the context of EEG-MRI safety, can play as significant a role as the loop effect (from electromagnetic induction) in the heating of EEG electrodes, and therefore wire lengths that are odd multiples of ¼ RF wavelength should be avoided. These results have important implications for the design of EEG electrodes and MRI studies as they help to minimize the risk to patients undergoing MRI with EEG electrodes in place.
George E, Liacouras P, Lee TC, Mitsouras D. 3D-Printed Patient-Specific Models for CT-and MRI-Guided Procedure Planning. AJNR Am J Neuroradiol. 2017;38 (7) :E46-7.
Mallory MA, Sagara Y, Aydogan F, Desantis S, Jayender J, Caragacianu D, Gombos E, Vosburgh KG, Jolesz FA, Golshan M. Feasibility of Intraoperative Breast MRI and the Role of Prone Versus Supine Positioning in Surgical Planning for Breast-Conserving Surgery. Breast J. 2017;23 (6) :713-7.Abstract
We assessed the feasibility of supine intraoperative MRI (iMRI) during breast-conserving surgery (BCS), enrolling 15 patients in our phase I trial between 2012 and 2014. Patients received diagnostic prone MRI, BCS, pre-excisional supine iMRI, and postexcisional supine iMRI. Feasibility was assessed based on safety, sterility, duration, and image-quality. Twelve patients completed the study; mean duration = 114 minutes; all images were adequate; no complications, safety, or sterility issues were encountered. Substantial tumor-associated changes occurred (mean displacement = 67.7 mm, prone-supine metric, n = 7). We have demonstrated iMRI feasibility for BCS and have identified potential limitations of prone breast MRI that may impact surgical planning.
Wong SM, Freedman RA, Sagara Y, Aydogan F, Barry WT, Golshan M. Growing Use of Contralateral Prophylactic Mastectomy Despite no Improvement in Long-term Survival for Invasive Breast Cancer. Ann Surg. 2017;265 (3) :581-9.Abstract
OBJECTIVE: To update and examine national temporal trends in contralateral prophylactic mastectomy (CPM) and determine whether survival differed for invasive breast cancer patients based on hormone receptor (HR) status and age. METHODS: We identified women diagnosed with unilateral stage I to III breast cancer between 1998 and 2012 within the Surveillance, Epidemiology, and End Results registry. We compared characteristics and temporal trends between patients undergoing breast-conserving surgery, unilateral mastectomy, and CPM. We then performed Cox proportional-hazards regression to examine breast cancer-specific survival (BCSS) and overall survival (OS) in women diagnosed between 1998 and 2007, who underwent breast-conserving surgery with radiation (breast-conserving therapy), unilateral mastectomy, or CPM, with subsequent subgroup analysis stratifying by age and HR status. RESULTS: Of 496,488 women diagnosed with unilateral invasive breast cancer, 59.6% underwent breast-conserving surgery, 33.4% underwent unilateral mastectomy, and 7.0% underwent CPM. Overall, the proportion of women undergoing CPM increased from 3.9% in 2002 to 12.7% in 2012 (P < 0.001). Reconstructive surgery was performed in 48.3% of CPM patients compared with only 16.0% of unilateral mastectomy patients, with rates of reconstruction with CPM rising from 35.3% in 2002 to 55.4% in 2012 (P < 0.001). When compared with breast-conserving therapy, we found no significant improvement in BCSS or OS for women undergoing CPM (BCSS: HR 1.08, 95% confidence interval 1.01-1.16; OS: HR 1.08, 95% confidence interval 1.03-1.14), regardless of HR status or age. CONCLUSIONS: The use of CPM more than tripled during the study period despite evidence suggesting no survival benefit over breast conservation. Further examination on how to optimally counsel women about surgical options is warranted.

Pages