Publications

2017
Michael A Silva, Alfred P See, Walid I Essayed, Alexandra J Golby, and Yanmei Tie. 2017. “Challenges and Techniques for Presurgical Brain Mapping with Functional MRI.” Neuroimage Clin, 17, Pp. 794-803.Abstract
Functional magnetic resonance imaging (fMRI) is increasingly used for preoperative counseling and planning, and intraoperative guidance for tumor resection in the eloquent cortex. Although there have been improvements in image resolution and artifact correction, there are still limitations of this modality. In this review, we discuss clinical fMRI's applications, limitations and potential solutions. These limitations depend on the following parameters: foundations of fMRI, physiologic effects of the disease, distinctions between clinical and research fMRI, and the design of the fMRI study. We also compare fMRI to other brain mapping modalities which should be considered as alternatives or adjuncts when appropriate, and discuss intraoperative use and validation of fMRI. These concepts direct the clinical application of fMRI in neurosurgical patients.
Mizuki Nishino, Adrian G Sacher, Leena Gandhi, Zhao Chen, Esra Akbay, Andriy Fedorov, Carl F Westin, Hiroto Hatabu, Bruce E Johnson, Peter Hammerman, and Kwok-Kin Wong. 2017. “Co-clinical Quantitative Tumor Volume Imaging in ALK-rearranged NSCLC Treated with Crizotinib.” Eur J Radiol, 88, Pp. 15-20.Abstract
PURPOSE: To evaluate and compare the volumetric tumor burden changes during crizotinib therapy in mice and human cohorts with ALK-rearranged non-small-cell lung cancer (NSCLC). METHODS: Volumetric tumor burden was quantified on serial imaging studies in 8 bitransgenic mice with ALK-rearranged adenocarcinoma treated with crizotinib, and in 33 human subjects with ALK-rearranged NSCLC treated with crizotinib. The volumetric tumor burden changes and the time to maximal response were compared between mice and humans. RESULTS: The median tumor volume decrease (%) at the maximal response was -40.4% (range: -79.5%-+11.7%) in mice, and -72.9% (range: -100%-+72%) in humans (Wilcoxon p=0.03). The median time from the initiation of therapy to maximal response was 6 weeks in mice, and 15.7 weeks in humans. Overall volumetric response rate was 50% in mice and 97% in humans. Spider plots of tumor volume changes during therapy demonstrated durable responses in the human cohort, with a median time on therapy of 13.1 months. CONCLUSION: The present study described an initial attempt to evaluate quantitative tumor burden changes in co-clinical imaging studies of genomically-matched mice and human cohorts with ALK-rearranged NSCLC treated with crizotinib. Differences are noted in the degree of maximal volume response between the two cohorts in this well-established paradigm of targeted therapy, indicating a need for further studies to optimize co-clinical trial design and interpretation.
Sophia C Kamran, Matthias M Manuel, Linda P Cho, Antonio L Damato, Ehud J Schmidt, Clare Tempany, Robert A Cormack, and Akila N Viswanathan. 2017. “Comparison of Outcomes for MR-guided versus CT-guided High-dose-rate Interstitial Brachytherapy in Women with Locally Advanced Carcinoma of the Cervix.” Gynecol Oncol, 145, 2, Pp. 284-90.Abstract

OBJECTIVE: The purpose was to compare local control (LC), overall survival (OS) and dose to the organs at risk (OAR) in women with locally advanced cervical cancer treated with MR-guided versus CT-guided interstitial brachytherapy (BT). METHODS: 56 patients (29 MR, 27 CT) were treated with high-dose-rate (HDR) interstitial BT between 2005-2015. The MR patients had been prospectively enrolled on a Phase II clinical trial. Data were analyzed using Kaplan-Meier (K-M) and Cox proportional hazards statistical modeling in JMP® & R®. RESULTS: Median follow-up time was 19.7months (MR group) and 18.4months (CT group). There were no statistically significant differences in patient age at diagnosis, histology, percent with tumor size >4cm, grade, FIGO stage or lymph node involvement between the groups. Patients in the MR group had more lymphovascular involvement compared to patients in the CT group (p<0.01). When evaluating plans generated, there were no statistically significant differences in median cumulative dose to the high-risk clinical target volume or the OAR. 2-year K-M LC rates for MR-based and CT-based treatments were 96% and 87%, respectively (log-rank p=0.65). At 2years, OS was significantly better in the MR-guided cohort (84% vs. 56%, p=0.036). On multivariate analysis, squamous histology was associated with longer OS (HR 0.23, 95% CI 0.07-0.72) in a model with MR BT (HR 0.35, 95% CI 0.08-1.18). There was no difference in toxicities between CT and MR BT. CONCLUSION: In this population of locally advanced cervical-cancer patients, MR-guided HDR BT resulted in estimated 96% 2-year local control and excellent survival and toxicity rates.

Ming Li, Vivek Narayan, Ritu R Gill, Jyothi P Jagannathan, Maria F Barile, Feng Gao, Raphael Bueno, and Jagadeesan Jayender. 2017. “Computer-Aided Diagnosis of Ground-Glass Opacity Nodules Using Open-Source Software for Quantifying Tumor Heterogeneity.” AJR Am J Roentgenol, 209, 6, Pp. 1216-27.Abstract
OBJECTIVE: The purposes of this study are to develop quantitative imaging biomarkers obtained from high-resolution CTs for classifying ground-glass nodules (GGNs) into atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC); to evaluate the utility of contrast enhancement for differential diagnosis; and to develop and validate a support vector machine (SVM) to predict the GGN type. MATERIALS AND METHODS: The heterogeneity of 248 GGNs was quantified using custom software. Statistical analysis with a univariate Kruskal-Wallis test was performed to evaluate metrics for significant differences among the four GGN groups. The heterogeneity metrics were used to train a SVM to learn and predict the lesion type. RESULTS: Fifty of 57 and 51 of 57 heterogeneity metrics showed statistically significant differences among the four GGN groups on unenhanced and contrast-enhanced CT scans, respectively. The SVM predicted lesion type with greater accuracy than did three expert radiologists. The accuracy of classifying the GGNs into the four groups on the basis of the SVM algorithm was 70.9%, whereas the accuracy of the radiologists was 39.6%. The accuracy of SVM in classifying the AIS and MIA nodules was 73.1%, and the accuracy of the radiologists was 35.7%. For indolent versus invasive lesions, the accuracy of the SVM was 88.1%, and the accuracy of the radiologists was 60.8%. We found that contrast enhancement does not significantly improve the differential diagnosis of GGNs. CONCLUSION: Compared with the GGN classification done by the three radiologists, the SVM trained regarding all the heterogeneity metrics showed significantly higher accuracy in classifying the lesions into the four groups, differentiating between AIS and MIA and between indolent and invasive lesions. Contrast enhancement did not improve the differential diagnosis of GGNs.
Sadhna Verma, Peter L Choyke, Steven C Eberhardt, Aytekin Oto, Clare M Tempany, Baris Turkbey, and Andrew B Rosenkrantz. 2017. “The Current State of MR Imaging-targeted Biopsy Techniques for Detection of Prostate Cancer.” Radiology, 285, 2, Pp. 343-56.Abstract
Systematic transrectal ultrasonography (US)-guided biopsy is the standard approach for histopathologic diagnosis of prostate cancer. However, this technique has multiple limitations because of its inability to accurately visualize and target prostate lesions. Multiparametric magnetic resonance (MR) imaging of the prostate is more reliably able to localize significant prostate cancer. Targeted prostate biopsy by using MR imaging may thus help to reduce false-negative results and improve risk assessment. Several commercial devices are now available for targeted prostate biopsy, including in-gantry MR imaging-targeted biopsy and real-time transrectal US-MR imaging fusion biopsy systems. This article reviews the current status of MR imaging-targeted biopsy platforms, including technical considerations, as well as advantages and challenges of each technique.
Daniel I Glazer, Elmira Hassanzadeh, Andriy Fedorov, Olutayo I Olubiyi, Shayna S Goldberger, Tobias Penzkofer, Trevor A Flood, Paul Masry, Robert V. Mulkern, Michelle S Hirsch, Clare M Tempany, and Fiona M Fennessy. 2017. “Diffusion-weighted Endorectal MR Imaging at 3T for Prostate Cancer: Correlation with Tumor Cell Density and Percentage Gleason Pattern on Whole Mount Pathology.” Abdom Radiol (NY), 42, 3, Pp. 918-25.Abstract

OBJECTIVE: To determine if tumor cell density and percentage of Gleason pattern within an outlined volumetric tumor region of interest (TROI) on whole-mount pathology (WMP) correlate with apparent diffusion coefficient (ADC) values on corresponding TROIs outlined on pre-operative MRI. METHODS: Men with biopsy-proven prostate adenocarcinoma undergoing multiparametric MRI (mpMRI) prior to prostatectomy were consented to this prospective study. WMP and mpMRI images were viewed using 3D Slicer and each TROI from WMP was contoured on the high b-value ADC maps (b0, 1400). For each TROI outlined on WMP, TCD (tumor cell density) and the percentage of Gleason pattern 3, 4, and 5 were recorded. The ADCmean, ADC10th percentile, ADC90th percentile, and ADCratio were also calculated in each case from the ADC maps using 3D Slicer. RESULTS: Nineteen patients with 21 tumors were included in this study. ADCmean values for TROIs were 944.8 ± 327.4 vs. 1329.9 ± 201.6 mm(2)/s for adjacent non-neoplastic prostate tissue (p < 0.001). ADCmean, ADC10th percentile, and ADCratio values for higher grade tumors were lower than those of lower grade tumors (mean 809.71 and 1176.34 mm(2)/s, p = 0.014; 10th percentile 613.83 and 1018.14 mm(2)/s, p = 0.009; ratio 0.60 and 0.94, p = 0.005). TCD and ADCmean (ρ = -0.61, p = 0.005) and TCD and ADC10th percentile (ρ = -0.56, p = 0.01) were negatively correlated. No correlation was observed between percentage of Gleason pattern and ADC values. CONCLUSION: DWI MRI can characterize focal prostate cancer using ADCratio, ADC10th percentile, and ADCmean, which correlate with pathological tumor cell density.

Melissa A Mallory, Yasuaki Sagara, Fatih Aydogan, Stephen Desantis, Jagadeesan Jayender, Diana Caragacianu, Eva Gombos, Kirby G. Vosburgh, Ferenc A Jolesz, and Mehra Golshan. 2017. “Feasibility of Intraoperative Breast MRI and the Role of Prone Versus Supine Positioning in Surgical Planning for Breast-Conserving Surgery.” Breast J, 23, 6, Pp. 713-7.Abstract
We assessed the feasibility of supine intraoperative MRI (iMRI) during breast-conserving surgery (BCS), enrolling 15 patients in our phase I trial between 2012 and 2014. Patients received diagnostic prone MRI, BCS, pre-excisional supine iMRI, and postexcisional supine iMRI. Feasibility was assessed based on safety, sterility, duration, and image-quality. Twelve patients completed the study; mean duration = 114 minutes; all images were adequate; no complications, safety, or sterility issues were encountered. Substantial tumor-associated changes occurred (mean displacement = 67.7 mm, prone-supine metric, n = 7). We have demonstrated iMRI feasibility for BCS and have identified potential limitations of prone breast MRI that may impact surgical planning.
Nick Todd, Oliver Josephs, Peter Zeidman, Guillaume Flandin, Steen Moeller, and Nikolaus Weiskopf. 2017. “Functional Sensitivity of 2D Simultaneous Multi-Slice Echo-Planar Imaging: Effects of Acceleration on g-factor and Physiological Noise.” Front Neurosci, 11, Pp. 158.Abstract
Accelerated data acquisition with simultaneous multi-slice (SMS) imaging for functional MRI studies leads to interacting and opposing effects that influence the sensitivity to blood oxygen level-dependent (BOLD) signal changes. Image signal to noise ratio (SNR) is decreased with higher SMS acceleration factors and shorter repetition times (TR) due to g-factor noise penalties and saturation of longitudinal magnetization. However, the lower image SNR is counteracted by greater statistical power from more samples per unit time and a higher temporal Nyquist frequency that allows for better removal of spurious non-BOLD high frequency signal content. This study investigated the dependence of the BOLD sensitivity on these main driving factors and their interaction, and provides a framework for evaluating optimal acceleration of SMS-EPI sequences. functional magnetic resonance imaging (fMRI) data from a scenes/objects visualization task was acquired in 10 healthy volunteers at a standard neuroscience resolution of 3 mm on a 3T MRI scanner. SMS factors 1, 2, 4, and 8 were used, spanning TRs of 2800 ms to 350 ms. Two data processing methods were used to equalize the number of samples over the SMS factors. BOLD sensitivity was assessed using g-factors maps, temporal SNR (tSNR), and t-score metrics. tSNR results show a dependence on SMS factor that is highly non-uniform over the brain, with outcomes driven by g-factor noise amplification and the presence of high frequency noise. The t-score metrics also show a high degree of spatial dependence: the lower g-factor noise area of V1 shows significant improvements at higher SMS factors; the moderate-level g-factor noise area of the parahippocampal place area shows only a trend of improvement; and the high g-factor noise area of the ventral-medial pre-frontal cortex shows a trend of declining t-scores at higher SMS factors. This spatial variability suggests that the optimal SMS factor for fMRI studies is region dependent. For task fMRI studies done with similar parameters as were used here (3T scanner, 32-channel RF head coil, whole brain coverage at 3 mm isotropic resolution), we recommend SMS accelerations of 4x (conservative) to 8x (aggressive) for most studies and a more conservative acceleration of 2x for studies interested in anterior midline regions.
Alison M Pouch, Ahmed H Aly, Andras Lasso, Alexander V Nguyen, Adam B Scanlan, Francis X McGowan, Gabor Fichtinger, Robert C Gorman, Joseph H Gorman, Paul A Yushkevich, and Matthew A Jolley. 2017. “Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome.” Funct Imaging Model Heart, 10263, Pp. 95-105.Abstract
Hypoplastic left heart syndrome (HLHS) is a single-ventricle congenital heart disease that is fatal if left unpalliated. In HLHS patients, the tricuspid valve is the only functioning atrioventricular valve, and its competence is therefore critical. This work demonstrates the first automated strategy for segmentation, modeling, and morphometry of the tricuspid valve in transthoracic 3D echocardiographic (3DE) images of pediatric patients with HLHS. After initial landmark placement, the automated segmentation step uses multi-atlas label fusion and the modeling approach uses deformable modeling with medial axis representation to produce patient-specific models of the tricuspid valve that can be comprehensively and quantitatively assessed. In a group of 16 pediatric patients, valve segmentation and modeling attains an accuracy (mean boundary displacement) of 0.8 ± 0.2 mm relative to manual tracing and shows consistency in annular and leaflet measurements. In the future, such image-based tools have the potential to improve understanding and evaluation of tricuspid valve morphology in HLHS and guide strategies for patient care.
Sonia Pujol, Ryan Cabeen, Sophie B Sébille, Jérôme Yelnik, Chantal François, Sara Fernandez Vidal, Carine Karachi, Yulong Zhao, Rees G Cosgrove, Pierre Jannin, Ron Kikinis, and Eric Bardinet. 2017. “In vivo Exploration of the Connectivity between the Subthalamic Nucleus and the Globus Pallidus in the Human Brain using Multi-Fiber Tractography.” Front Neuroanat, 10, Pp. 119.Abstract

The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson's disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson's disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.

Marc Herrlich, Parnian Tavakol, David Black, Dirk Wenig, Christian Rieder, Rainer Malaka, and Ron Kikinis. 2017. “Instrument-mounted Displays for Reducing Cognitive Load During Surgical Navigation.” Int J Comput Assist Radiol Surg, 12, 9, Pp. 1599-1605.Abstract
PURPOSE: Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. METHODS: By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. RESULTS: Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. CONCLUSION: We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.
Sophia C Kamran, Matthias M Manuel, Paul Catalano, Linda Cho, Antonio L Damato, Larissa J Lee, Ehud J Schmidt, and Akila N Viswanathan. 2017. “MR- versus CT-based High-dose-rate Interstitial Brachytherapy for Vaginal Recurrence of Endometrial Cancer.” Brachytherapy, 16, 6, Pp. 1159-68.Abstract
PURPOSE: To compare clinical outcomes of MR-based versus CT-based high-dose-rate interstitial brachytherapy (ISBT) for vaginal recurrence of endometrioid endometrial cancer (EC). METHODS AND MATERIALS: We reviewed 66 patients with vaginal recurrent EC; 18 had MR-based ISBT on a prospective clinical trial and 48 had CT-based treatment. Kaplan-Meier survival modeling was used to generate estimates for local control (LC), disease-free interval (DFI), and overall survival (OS), and multivariate Cox modeling was used to assess prognostic factors. Toxicities were evaluated and compared. RESULTS: Median followup was 33 months (CT 30 months, MR 35 months). Median cumulative equivalent dose in 2-Gy fractions was 75.5 Gy for MR-ISBT and 73.8 Gy for CT-ISBT (p = 0.58). MR patients were older (p = 0.03) and had larger tumor size (>4 cm vs. ≤ 4 cm) compared to CT patients (p = 0.04). For MR-based versus CT-based ISBT, 3-year KM rate for local control was 100% versus 78% (p = 0.04), DFI was 69% versus 55% (p = 0.1), and OS was 63% versus 75% (p = 0.81), respectively. On multivariate analysis, tumor Grade 3 was associated with worse OS (HR 3.57, 95% CI 1.25, 11.36) in a model with MR-ISBT (HR 0.56, 95% CI 0.16, 1.89). Toxicities were not significantly different between the two modalities. CONCLUSION: Despite worse patient prognostic features, MR-ISBT was associated with a significantly better (100%) 3-year local control, comparable survival, and improved DFI rates compared to CT. Toxicities did not differ compared to CT-ISBT patients. Tumor grade contributed as the most significant predictor for survival. Larger prospective studies are needed to assess the impact of MR-ISBT on survival outcomes.
Andriy Fedorov, Mark G Vangel, Clare M Tempany, and Fiona M Fennessy. 2017. “Multiparametric Magnetic Resonance Imaging of the Prostate: Repeatability of Volume and Apparent Diffusion Coefficient Quantification.” Invest Radiol, 52, 9, Pp. 538-46.Abstract
OBJECTIVES: The aim of this study was to evaluate the repeatability of a region of interest (ROI) volume and mean apparent diffusion coefficient (ADC) in standard-of-care 3 T multiparametric magnetic resonance imaging (mpMRI) of the prostate obtained with the use of endorectal coil. MATERIALS AND METHODS: This prospective study was Health Insurance Portability and Accountability Act compliant, with institutional review board approval and written informed consent. Men with confirmed or suspected treatment-naive prostate cancer scheduled for mpMRI were offered a repeat mpMRI within 2 weeks. Regions of interest corresponding to the whole prostate gland, the entire peripheral zone (PZ), normal PZ, and suspected tumor ROI (tROI) on axial T2-weighted, dynamic contrast-enhanced subtract, and ADC images were annotated and assessed using Prostate Imaging Reporting and Data System (PI-RADS) v2. Repeatability of the ROI volume for each of the analyzed image types and mean ROI ADC was summarized with repeatability coefficient (RC) and RC%. RESULTS: A total of 189 subjects were approached to participate in the study. Of 40 patients that gave initial agreement, 15 men underwent 2 mpMRI examinations and completed the study. Peripheral zone tROIs were identified in 11 subjects. Tumor ROI volume was less than 0.5 mL in 8 of 11 subjects. PI-RADS categories were identical between baseline-repeat studies in 11/15 subjects and differed by 1 point in 4/15. Peripheral zone tROI volume RC (RC%) was 233 mm (71%) on axial T2-weighted, 422 mm (112%) on ADC, and 488 mm (119%) on dynamic contrast-enhanced subtract. Apparent diffusion coefficient ROI mean RC (RC%) were 447 × 10 mm/s (42%) in PZ tROI and 471 × 10 mm/s (30%) in normal PZ. Significant difference in repeatability of the tROI volume across series was observed (P < 0.005). The mean ADC RC% was lower than volume RC% for tROI ADC (P < 0.05). CONCLUSIONS: PI-RADS v2 overall assessment was highly repeatable. Multiparametric magnetic resonance imaging sequences differ in volume measurement repeatability. The mean tROI ADC is more repeatable compared with tROI volume in ADC. Repeatability of prostate ADC is comparable with that in other abdominal organs.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Michael Halle, Valentin Demeusy, and Ron Kikinis. 2017. “The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases.” Front Neuroinform, 11, Pp. 22.Abstract
The Open Anatomy Browser (OABrowser) is an open source, web-based, zero-installation anatomy atlas viewer based on current web browser technologies and evolving anatomy atlas interoperability standards. OABrowser displays three-dimensional anatomical models, image cross-sections of labeled structures and source radiological imaging, and a text-based hierarchy of structures. The viewer includes novel collaborative tools: users can save bookmarks of atlas views for later access and exchange those bookmarks with other users, and dynamic shared views allow groups of users can participate in a collaborative interactive atlas viewing session. We have published several anatomy atlases (an MRI-derived brain atlas and atlases of other parts of the anatomy) to demonstrate OABrowser's functionality. The atlas source data, processing tools, and the source for OABrowser are freely available through GitHub and are distributed under a liberal open source license.
Jeffrey P Guenette, Kemal Tuncali, Nathan Himes, Paul B Shyn, and Thomas C Lee. 2017. “Percutaneous Image-Guided Cryoablation of Head and Neck Tumors for Local Control, Preservation of Functional Status, and Pain Relief.” AJR Am J Roentgenol, 208, 2, Pp. 453-8.Abstract

OBJECTIVE: We report nine consecutive percutaneous image-guided cryoablation procedures of head and neck tumors in seven patients (four men and three women; mean age, 68 years; age range, 50-78 years). Ablation of the entire tumor for local control or ablation of a region of tumor for pain relief or preservation of function was achieved in eight of nine procedures. One patient experienced intraprocedural bradycardia, and another developed a neopharyngeal abscess. There were no deaths, permanent neurologic or functional deficits, vascular complications, or adverse cosmetic sequelae due to the procedures. CONCLUSION: Percutaneous image-guided cryoablation offers a potentially less morbid minimally invasive treatment option than salvage head and neck surgery. The complications that we encountered may be avoidable with increased experience. Further work is needed to continue improving the safety and efficacy of cryoablation of head and neck tumors and to continue expanding the use of cryoablation in patients with head and neck tumors that cannot be treated surgically.

Ruizhi Liao, Lipeng Ning, Zhenrui Chen, Laura Rigolo, Shun Gong, Ofer Pasternak, Alexandra J Golby, Yogesh Rathi, Lauren J O'Donnell, and JV ckovic. 2017. “Performance of Unscented Kalman Filter Tractography in Edema: Analysis of the Two-tensor Model.” Neuroimage Clin, 15, Pp. 819-31.Abstract
Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more sensitive than the traditional single-tensor streamline tractography. We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tractography in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several tractography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific fMRI activation that was reached by the tractography. We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model, would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional anisotropy threshold and including a free water model did not affect the UKF two-tensor tractography output appreciably in these two patient datasets. The most effective parameter for increasing tracking sensitivity was the generalized anisotropy (GA) threshold, which increased the length of tracked fibers when reduced to 0.075. In addition, the most effective seeding strategy was seeding in the whole brain or in a large region outside of the edema. Overall, the main contribution of this study is to provide insight into how UKF tractography can work, using a two-tensor model, to begin to address the challenge of fiber tract reconstruction in edematous regions near brain tumors.
Miaomiao Zhang, William M Wells, and Polina Golland. 2017. “Probabilistic Modeling of Anatomical Variability using a Low Dimensional Parameterization of Diffeomorphisms.” Med Image Anal, 41, Pp. 55-62.Abstract
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space.
Tina Kapur and Clare M. Tempany. 2017. “Proceedings of the 9th Image Guided Therapy Workshop” 9, Pp. 1-54. 2017 IGT Workshop Proceedings
Jose de Arcos, Ehud J Schmidt, Wei Wang, Junichi Tokuda, Kamal Vij, Ravi T Seethamraju, Antonio L Damato, Charles L Dumoulin, Robert A Cormack, and Akila N Viswanathan. 2017. “Prospective Clinical Implementation of a Novel Magnetic Resonance Tracking Device for Real-Time Brachytherapy Catheter Positioning.” Int J Radiat Oncol Biol Phys, 99, 3, Pp. 618-26.Abstract
PURPOSE: We designed and built dedicated active magnetic resonance (MR)-tracked (MRTR) stylets. We explored the role of MRTR in a prospective clinical trial. METHODS AND MATERIALS: Eleven gynecologic cancer patients underwent MRTR to rapidly optimize interstitial catheter placement. MRTR catheter tip location and orientation were computed and overlaid on images displayed on in-room monitors at rates of 6 to 16 frames per second. Three modes of actively tracked navigation were analyzed: coarse navigation to the approximate region around the tumor; fine-tuning, bringing the stylets to the desired location; and pullback, with MRTR stylets rapidly withdrawn from within the catheters, providing catheter trajectories for radiation treatment planning (RTP). Catheters with conventional stylets were inserted, forming baseline locations. MRTR stylets were substituted, and catheter navigation was performed by a clinician working inside the MRI bore, using monitor feedback. RESULTS: Coarse navigation allowed repositioning of the MRTR catheters tips by 16 mm (mean), relative to baseline, in 14 ± 5 s/catheter (mean ± standard deviation [SD]). The fine-tuning mode repositioned the catheter tips by a further 12 mm, in 24 ± 17 s/catheter. Pullback mode provided catheter trajectories with RTP point resolution of ∼1.5 mm, in 1 to 9 s/catheter. CONCLUSIONS: MRTR-based navigation resulted in rapid and optimal placement of interstitial brachytherapy catheters. Catheters were repositioned compared with the initial insertion without tracking. In pullback mode, catheter trajectories matched computed tomographic precision, enabling their use for RTP.
Elmira Hassanzadeh, Daniel I Glazer, Ruth M Dunne, Fiona M Fennessy, Mukesh G Harisinghani, and Clare M Tempany. 2017. “Prostate Imaging Reporting and Data System Version 2 (PI-RADS v2): A Pictorial Review.” Abdom Radiol (NY), 42, 1, Pp. 278-89.Abstract

The most recent edition of the prostate imaging reporting and data system (PI-RADS version 2) was developed based on expert consensus of the international working group on prostate cancer. It provides the minimum acceptable technical standards for MR image acquisition and suggests a structured method for multiparametric prostate MRI (mpMRI) reporting. T1-weighted, T2-weighted (T2W), diffusion-weighted (DWI), and dynamic contrast-enhanced (DCE) imaging are the suggested sequences to include in mpMRI. The PI-RADS version 2 scoring system enables the reader to assess and rate all focal lesions detected at mpMRI to determine the likelihood of a clinically significant cancer. According to PI-RADS v2, a lesion with a Gleason score ≥7, volume >0.5 cc, or extraprostatic extension is considered clinically significant. PI-RADS v2 uses the concept of a dominant MR sequence based on zonal location of the lesion rather than summing each component score, as was the case in version 1. The dominant sequence in the peripheral zone is DWI and the corresponding apparent diffusion coefficient (ADC) map, with a secondary role for DCE in equivocal cases (PI-RADS score 3). For lesions in the transition zone, T2W images are the dominant sequence with DWI/ADC images playing a supporting role in the case of an equivocal lesion.

Pages