TRD 1: Imaging Cancer Heterogeneity

N Agar C Tempany Alexandra Golby S Maier
Nathalie Y. R. Agar PhD Clare M. Tempany MD Alexandra Golby MD Stephan E. Maier MD, PhD
       
Junichi Tokuda Fiona Sandro Santagata
Junichi Tokuda PhD Fiona M. Fennessy MD, PhD Sandro Santagata MD, PhD Filip Szczepankiewicz PhD

Led by Nathalie Agar, the focus areas for the Imaging Cancer Heterogeneity TRD are:

  • Integrating mass spectrometry imaging (MSI) of tissue metabolism, MRI, and histopathology for the assessment of brain tumor heterogeneity.

  • New diffusion imaging sequences to characterize cell architecture traits in prostate cancer.

  • New MRI pulse sequence for blood oxygenation mapping that accelerates acquisition speed more than ten-fold, without sacrificing volume coverage.

 

Select Publications

Abdelmoula WM, Lopez BG-C, Randall EC, Kapur T, Sarkaria JN, White FM, Agar JN, Wells WM, Agar NYR. Peak Learning of Mass Spectrometry Imaging Data Using Artificial Neural Networks. Nat Commun. 2021;12 (1) :5544.Abstract
Mass spectrometry imaging (MSI) is an emerging technology that holds potential for improving, biomarker discovery, metabolomics research, pharmaceutical applications and clinical diagnosis. Despite many solutions being developed, the large data size and high dimensional nature of MSI, especially 3D datasets, still pose computational and memory complexities that hinder accurate identification of biologically relevant molecular patterns. Moreover, the subjectivity in the selection of parameters for conventional pre-processing approaches can lead to bias. Therefore, we assess if a probabilistic generative model based on a fully connected variational autoencoder can be used for unsupervised analysis and peak learning of MSI data to uncover hidden structures. The resulting msiPL method learns and visualizes the underlying non-linear spectral manifold, revealing biologically relevant clusters of tissue anatomy in a mouse kidney and tumor heterogeneity in human prostatectomy tissue, colorectal carcinoma, and glioblastoma mouse model, with identification of underlying m/z peaks. The method is applied for the analysis of MSI datasets ranging from 3.3 to 78.9 GB, without prior pre-processing and peak picking, and acquired using different mass spectrometers at different centers.
Basu SS, Stopka SA, Abdelmoula WM, Randall EC, Gimenez-Cassina Lopez B, Regan MS, Calligaris D, Lu FF, Norton I, Mallory MA, et al. Interim Clinical Trial Analysis of Intraoperative Mass Spectrometry for Breast Cancer Surgery. NPJ Breast Cancer. 2021;7 (1) :116.Abstract
Optimal resection of breast tumors requires removing cancer with a rim of normal tissue while preserving uninvolved regions of the breast. Surgical and pathological techniques that permit rapid molecular characterization of tissue could facilitate such resections. Mass spectrometry (MS) is increasingly used in the research setting to detect and classify tumors and has the potential to detect cancer at surgical margins. Here, we describe the ex vivo intraoperative clinical application of MS using a liquid micro-junction surface sample probe (LMJ-SSP) to assess breast cancer margins. In a midpoint analysis of a registered clinical trial, surgical specimens from 21 women with treatment naïve invasive breast cancer were prospectively collected and analyzed at the time of surgery with subsequent histopathological determination. Normal and tumor breast specimens from the lumpectomy resected by the surgeon were smeared onto glass slides for rapid analysis. Lipidomic profiles were acquired from these specimens using LMJ-SSP MS in negative ionization mode within the operating suite and post-surgery analysis of the data revealed five candidate ions separating tumor from healthy tissue in this limited dataset. More data is required before considering the ions as candidate markers. Here, we present an application of ambient MS within the operating room to analyze breast cancer tissue and surgical margins. Lessons learned from these initial promising studies are being used to further evaluate the five candidate biomarkers and to further refine and optimize intraoperative MS as a tool for surgical guidance in breast cancer.
Basu SS, Agar NYR. Bringing Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging to the Clinics. Clin Lab Med. 2021;41 (2) :309-24.Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an emerging analytical technique that promises to change tissue-based diagnostics. This article provides a brief introduction to MALDI MSI as well as clinical diagnostic workflows and opportunities to apply this powerful approach. It describes various MALDI MSI applications, from more clinically mature applications such as cancer to emerging applications such as infectious diseases and drug distribution. In addition, it discusses the analytical considerations that need to be considered when bringing these approaches to different diagnostic problems and settings.
Langbein BJ, Szczepankiewicz F, Westin C-F, Bay C, Maier SE, Kibel AS, Tempany CM, Fennessy FM. A Pilot Study of Multidimensional Diffusion MRI for Assessment of Tissue Heterogeneity in Prostate Cancer. Invest Radiol. 2021.Abstract
OBJECTIVES: The objectives of this exploratory study were to investigate the feasibility of multidimensional diffusion magnetic resonance imaging (MddMRI) in assessing diffusion heterogeneity at both a macroscopic and microscopic level in prostate cancer (PCa). MATERIALS AND METHODS: Informed consent was obtained from 46 subjects who underwent 3.0-T prostate multiparametric MRI, complemented with a prototype spin echo-based MddMRI sequence in this institutional review board-approved study. Prostate cancer tumors and comparative normal tissue from each patient were contoured on both apparent diffusion coefficient and MddMRI-derived mean diffusivity (MD) maps (from which microscopic diffusion heterogeneity [MKi] and microscopic diffusion anisotropy were derived) using 3D Slicer. The discriminative ability of MddMRI-derived parameters to differentiate PCa from normal tissue was determined using the Friedman test. To determine if tumor diffusion heterogeneity is similar on macroscopic and microscopic scales, the linear association between SD of MD and mean MKi was estimated using robust regression (bisquare weighting). Hypothesis testing was 2 tailed; P values less than 0.05 were considered statistically significant. RESULTS: All MddMRI-derived parameters could distinguish tumor from normal tissue in the fixed-effects analysis (P < 0.0001). Tumor MKi was higher (P < 0.05) compared with normal tissue (median, 0.40; interquartile range, 0.29-0.52 vs 0.20-0.18; 0.25), as was tumor microscopic diffusion anisotropy (0.55; 0.36-0.81 vs 0.20-0.15; 0.28). The MKi could not be predicted (no significant association) by SD of MD. There was a significant correlation between tumor volume and SD of MD (R2 = 0.50, slope = 0.008 μm2/ms per millimeter, P < 0.001) but not between tumor volume and MKi. CONCLUSIONS: This explorative study demonstrates that MddMRI provides novel information on MKi and microscopic anisotropy, which differ from measures at the macroscopic level. MddMRI has the potential to characterize tumor tissue heterogeneity at different spatial scales.